37 research outputs found
Urban schools' teachers enacting project-based science
What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, 1990 ; Crawford, 1999 ; Krajcik, Blumenfeld, Marx, Bass, & Fredricks, 1998 ; Krajcik, Blumenfeld, Marx, & Solloway, 1994 ; Minstrell & van Zee, 2000 ). In this article, we describe the characteristics of inquiry teaching practices that promote student learning in urban schools. Teaching is a major factor that affects both achievement of and attitude of students toward science (Tamir, 1998 ). Our involvement in reform in a large urban district includes the development of suitable learning materials and providing continuous and practiced-based professional development (Fishman & Davis, in press; van Es, Reiser, Matese, & Gomez, 2002 ). Urban schools face particular challenges when enacting inquiry-based teaching practices like those espoused in PBS. In this article, we describe two case studies of urban teachers whose students achieved high gains on pre- and posttests and who demonstrated a great deal of preparedness and commitment to their students. Teachers' attempts to help their students to perform well are described and analyzed. The teachers we discuss work in a school district that strives to bring about reform in mathematics and science through systemic reform. The Center for Learning Technologies in Urban Schools (LeTUS) collaborates with the Detroit Public Schools to bring about reform in middle-school science. Through this collaboration, diverse populations of urban-school students learn science through inquiry-oriented projects and the use of various educational learning technologies. For inquiry-based science to succeed in urban schools, teachers must play an important role in enacting the curriculum while addressing the unique needs of students. The aim of this article is to describe patterns of good science teaching in urban school. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 722–745, 2006Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55780/1/20102_ftp.pd
Unintended knowledge learnt in primary science practical lessons
This study explored the different kinds of unintended learning in primary school practical science lessons. In this study, unintended learning has been defined as student learning that was found to occur that was not included in the teachers learning objectives for that specific lesson. A total of 22 lessons, taught by five teachers in Korean primary schools with 10- to 12-year-old students, were audio-and video recorded. Pre-lesson interviews with the teachers were conducted to ascertain their intended learning objectives. Students were asked to write short memos after the lesson about what they learnt. Post-lesson interviews with students and teachers were undertaken. What emerged was that there were three types of knowledge that students learnt unintentionally: factual knowledge gained by phenomenon-based reasoning, conceptual knowledge gained by relation- or model-based reasoning, and procedural knowledge acquired by practice. Most unintended learning found in this study fell into the factual knowledge and only a few cases of conceptual knowledge were found. Cases of both explicit procedural knowledge and implicit procedural knowledge were found. This study is significant in that it suggests how unintended learning in practical work can be facilitated as an educative opportunity for meaningful learning by exploring what and how students learnt
Sequential multiple methods as a contemporary method in learning disability nursing practice research.
This paper explores and advocates the use of sequential multiple methods as a contemporary strategy for undertaking research. Sequential multiple methods involve the use of results obtained through one data collection method to determine the direction and implementation of subsequent stages of a research project (Morse, 1991; Morgan, 1998). This paper will also explore the significance of how triangulating research at the epistemological, theoretical and methodological levels could enhance research. Finally the paper evaluates the significance of sequential multiple method in learning disability nursing research practice.Peer reviewe
The ROCO Kinase QkgA Is Necessary for Proliferation Inhibition by Autocrine Signals in Dictyostelium discoideumâ–¿
AprA and CfaD are secreted proteins that function as autocrine signals to inhibit cell proliferation in Dictyostelium discoideum. Cells lacking AprA or CfaD proliferate rapidly, and adding AprA or CfaD to cells slows proliferation. Cells lacking the ROCO kinase QkgA proliferate rapidly, with a doubling time 83% of that of the wild type, and overexpression of a QkgA-green fluorescent protein (GFP) fusion protein slows cell proliferation. We found that qkgA− cells accumulate normal levels of extracellular AprA and CfaD. Exogenous AprA or CfaD does not slow the proliferation of cells lacking qkgA, and expression of QkgA-GFP in qkgA− cells rescues this insensitivity. Like cells lacking AprA or CfaD, cells lacking QkgA tend to be multinucleate, accumulate nuclei rapidly, and show a mass and protein accumulation per nucleus like those of the wild type, suggesting that QkgA negatively regulates proliferation but not growth. Despite their rapid proliferation, cells lacking AprA, CfaD, or QkgA expand as a colony on bacteria less rapidly than the wild type. Unlike AprA and CfaD, QkgA does not affect spore viability following multicellular development. Together, these results indicate that QkgA is necessary for proliferation inhibition by AprA and CfaD, that QkgA mediates some but not all of the effects of AprA and CfaD, and that QkgA may function downstream of these proteins in a signal transduction pathway regulating proliferation