11 research outputs found

    The Partial L-Moment of the Four Kappa Distribution

    Get PDF
    Statistical analysis of extreme events such as flood events is often carried out to predict large return period events. The behaviour of extreme events not only involves heavy-tailed distributions but also skewed distributions, similar to the four-parameter Kappa distribution (K4D). In general, this covers many extreme distributions such as the generalized logistic distribution (GLD), the generalized extreme value distribution (GEV), the generalized Pareto distribution (GPD), and so on. To utilize these distributions, we have to estimate parameters accurately. There are many parameter estimation methods, for example, Method of Moments, Maximum Likelihood Estimator, L-Moments, or partial L-Moments. Nowadays, no researchers have applied the partial L-Moments method to estimate the parameters of K4D. Therefore, the objective of this paper is to derive the partial L-Moments (PL-Moments) for K4D, namely the PL-Moments of the K4D in order to estimate hydrological extremes from censored data. The findings of this paper are formulas of parameter estimation for K4D based on the PL-Moments approach. We have derived the Partial Probability-Weighted Moments (PPWMs) of the K4D (Îē'r) and derive the estimation of parameters when separated by shape parameters (k,h) conditions i.e., case k>-1 and h>0, case k>-1 and h=0 and case -1<k<-1/h and h<0. Finally, we expect that the parameter estimate for K4D from this formula will help to make accurate forecasts. Doi: 10.28991/ESJ-2023-07-04-06 Full Text: PD

    Climate Forecasting Models for Precise Management Using Extreme Value Theory

    Get PDF
    The objective of this research was to develop a mathematical and statistical model for long-term prediction. The Extreme Value Theory (EVT) was applied to analyze the appropriate distribution model by using the peak-over-threshold approach with Generalized Pareto Distribution (GPD) to predict daily extreme precipitation and extreme temperatures in eight provinces located in the upper northeastern region of Thailand. Generally, each province has only 1–2 meteorological stations, so spatial analysis cannot be performed comprehensively. Therefore, the reanalysis data were obtained from the NOAA Physical Sciences Laboratory. The precipitation data were used for spatial analysis at the level of 25 square kilometers, which comprises 71 grid points, whereas the temperature data were used for spatial analysis at the level of 50 square kilometers, which includes 19 grid points. According to the analysis results, GPD was appropriate for the goodness of fit test with Kolmogorov-Smirnov Statistics (KS Test) according to the estimation for the return level in the annual return periods of 2 years, 5 years, 10 years, 25 years, 50 years, and 100 years, indicating the areas with daily extreme precipitation and extreme temperatures. The analysis results would be useful for supplementing decision-making in planning to cope with risk areas as well as in effective planning for resources and prevention. Doi: 10.28991/CEJ-2023-09-07-014 Full Text: PD

    Daily Maximum Rainfall Forecast Affected by Tropical Cyclones using Grey Theory

    Get PDF
    This research aims to develop a model for forecasting daily maximum rainfall caused by tropical cyclones over Northeastern Thailand during August and September 2022 and 2023. In the past, the ARIMA or ARIMAX method to forecast rainfall was used in research. It is a short-term rainfall prediction. In this research, the Grey Theory was applied as it is an approach that manages limited and discrete data for long-term forecasting. The Grey Theory has never been used to forecast rainfall that is affected by tropical cyclones in Northeastern Thailand. The Grey model GM(1,1) was analyzed with the highest daily cumulative rainfall data during the August and September tropical cyclones of the years 2018–2021, from the weather stations in Northeastern Thailand in 17 provinces. The results showed that in August 2022 and 2023, only Nong Bua Lamphu province had a highest daily rainfall forecast of over 100 mm, while the other provinces had values of less than 70 mm. For September 2022 and 2023, there were five provinces with the highest daily rainfall forecast of over 100 mm. The average of mean absolute percentage error (MAPE) of the maximum rainfall forecast model in August and September is approximately 20 percent; therefore, the model can be applied in real scenarios. Doi: 10.28991/CEJ-2022-08-08-02 Full Text: PD

    The influence of surface tension upon trapped waves and hydraulic falls

    Get PDF
    We consider steady two-dimensional free-surface flows past submerged obstructions on the bottom of a channel. The flow is assumed to be irrotational, and the fluid inviscid and incompressible. Both the effects of gravity and surface tension are considered. Critical flow solutions with subcritical flow upstream and supercritical flow downstream are sought using fully nonlinear boundary integral equation techniques based on the Cauchy integral formula. When a second submerged obstruction is included further upstream in the flow configuration in the absence of surface tension, solutions which have a train of waves trapped between the two obstacles before the critical flow have already been found (Dias and Vanden-Broeck 2004). We extend this work by including the effects of surface tension. Trapped wave solutions are found upstream for small values of the Bond number, for some values of the Froude number. Other types of trapped waves are found for stronger tension when the second obstruction is placed downstream of the hydraulic fall generated by the first obstacle

    Efficiency of sodium phytate in the remediation of As, Mn, and Cu contamination in acid mine drainage using water hyacinth

    No full text
    The accumulation and uptake efficiency of heavy metals, including As, Mn, and Cu, in water hyacinth (Eichhornia crassipes (Mart.) Solms) grown in synthetic acidic wastewater supplemented with sodium phytate (SP) was examined. Three treatments were studied using synthetic acidic wastewater containing 0.25, 5.0, and 1.0 mg/L of As, Mn, and Cu, respectively, (SM + heavy metals) and having pH in the range of 4–6, which comprised of (1) control treatments using SM + heavy metals at pH 4, 5, 6 without SP, and treatments using SM + heavy metals at pH 4, 5, 6 with SP: Cu (2) in a 1:3 M ratio and (3) a 1:6 M ratio. The translocation factor (TF < 1) indicated that plants had a lower capacity to transport heavy metals from the roots to the stems. The shoots of water hyacinth exhibited the highest capacity to absorb and store As in the pH 4-treatment with SP (SP:Cu1:3 mol), whereas the roots showed the greatest capacity at pH 4 without SP. The roots and shoots of the water hyacinth showed the greatest capacity to take up and store Mn in the pH 5-treatment with a 1:3 M ratio of SP:Cu. The roots showed the greatest capacity to take up and store Cu in the pH 6-treatment, and the shoots showed the highest capability in the pH 5-treatment with 1:3 M ratio of SP:Cu. Moreover, analysis of the chemical forms revealed that As accumulated in the arsenate form, whereas Mn accumulated in the divalent form

    āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļģāļŦāļĢāļąāļšāļ„āđˆāļēāļŠāļļāļ”āļ‚āļĩāļ”: āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļ–āļīāļ•āļīāļ­āļąāļ™āļ”āļąāļš r āļ­āļąāļ™āļ”āļąāļšāļ—āļĩāđˆāđƒāļŦāļāđˆāļ—āļĩāđˆāļŠāļļāļ”Extreme Value Model: The r Largest Order Statistic Model

    No full text
    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āđˆāļēāļŠāļļāļ”āļ‚āļĩāļ” (Extreme Value Analysis) āđ€āļ›āđ‡āļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āļŠāļļāļ”āļŦāļĢāļ·āļ­āļ•āđˆāļģāļŠāļļāļ” āđ‚āļ”āļĒāđ€āļ›āđ‡āļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ™āļ›āļĨāļēāļĒāļŦāļēāļ‡āļ‚āļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ‹āļķāđˆāļ‡āļĄāļĩāļˆāļģāļ™āļ§āļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļ™āđ‰āļ­āļĒāļĄāļēāļ āļ—āļģāđƒāļŦāđ‰āļœāļĨāļ‚āļ­āļ‡āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļĄāļĩāļ„āļ§āļēāļĄāļ„āļĨāļēāļ”āđ€āļ„āļĨāļ·āđˆāļ­āļ™āļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļ›āļĢāļ°āļĄāļēāļ“āļ„āđˆāļēāļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ‚āļ­āļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆāļœāļīāļ”āļžāļĨāļēāļ”āđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āļĄāļēāļ“āļĢāļ°āļ”āļąāļšāļāļēāļĢāđ€āļāļīāļ”āļ‹āđ‰āļģāđ„āļĄāđˆāđāļĄāđˆāļ™āļĒāļģāđ€āļ—āđˆāļēāļ—āļĩāđˆāļ„āļ§āļĢ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļāļēāļĢāļĨāļ”āļ„āļ§āļēāļĄāļ„āļĨāļēāļ”āđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ—āļĩāđˆāđ€āļāļīāļ”āļˆāļēāļāļāļēāļĢāļĄāļĩāļˆāļģāļ™āļ§āļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļ™āđ‰āļ­āļĒāļˆāļķāļ‡āļĄāļĩāļ„āļ§āļēāļĄāļˆāļģāđ€āļ›āđ‡āļ™āļ­āļĒāđˆāļēāļ‡āļĒāļīāđˆāļ‡ āļ‹āļķāđˆāļ‡āļ§āļīāļ˜āļĩāļāļēāļĢāļ—āļĩāđˆāđƒāļŠāđ‰āļāļąāļ™āļ­āļĒāđˆāļēāļ‡āđāļžāļĢāđˆāļŦāļĨāļēāļĒ āļ„āļ·āļ­ āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ‚āļ™āļēāļ”āļŦāļĢāļ·āļ­āđ€āļžāļīāđˆāļĄāļˆāļģāļ™āļ§āļ™āļ‚āđ‰āļ­āļĄāļđāļĨ āđ€āļ›āđ‡āļ™āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ‚āđ‰āļ­āļĄāļđāļĨāđ€āļ‚āđ‰āļēāđ„āļ›āđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āđˆāļēāļŠāļļāļ”āļ‚āļĩāļ” āļ‹āļķāđˆāļ‡āļˆāļ°āļŠāļēāļĄāļēāļĢāļ–āđ€āļžāļīāđˆāļĄāđ„āļ”āđ‰āđ€āļ‰āļžāļēāļ°āļāļĢāļ“āļĩāļ—āļĩāđˆāļœāļđāđ‰āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļĨāļ·āļ­āļāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļšāļĨāđ‡āļ­āļāđ€āļ§āļĨāļē (Block Time Method) āđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™ āđ‚āļ”āļĒāļāļēāļĢāđāļˆāļāđāļˆāļ‡āļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļĢāļ“āļĩāļ™āļĩāđ‰āđ€āļĢāļĩāļĒāļāļ§āđˆāļē āļāļēāļĢāđāļˆāļāđāļˆāļ‡āļ„āđˆāļēāļŠāļļāļ”āļ‚āļĩāļ”āļ™āļąāļĒāļ—āļąāđˆāļ§āđ„āļ›āļŠāļģāļŦāļĢāļąāļšāļŠāļ–āļīāļ•āļīāļ­āļąāļ™āļ”āļąāļš r āļ­āļąāļ™āļ”āļąāļšāļ—āļĩāđˆāđƒāļŦāļāđˆāļ—āļĩāđˆāļŠāļļāļ” (Generalized Extreme Value Distribution for the r Largest Order Statistics; GEVr) āļ–āļ·āļ­āļ§āđˆāļēāđ€āļ›āđ‡āļ™āļ§āļīāļ˜āļĩāļāļēāļĢāļ—āļĩāđˆāļˆāļ°āļ—āļģāđƒāļŦāđ‰āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ™āļĩāđ‰āļĄāļĩāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļ‚āđ‰āļ­āļĄāļđāļĨāļĄāļēāļāļ‚āļķāđ‰āļ™ āđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āļĄāļēāļ“āļ„āđˆāļēāļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āļĄāļēāļ“āļĢāļ°āļ”āļąāļšāļāļēāļĢāđ€āļāļīāļ”āļ‹āđ‰āļģāđāļĄāđˆāļ™āļĒāļģāļĄāļēāļāļĒāļīāđˆāļ‡āļ‚āļķāđ‰āļ™Extreme Value Analysis is the analysis of data with the largest and smallest values in the data set. They are at the tail end of the data distribution. Only a small fraction available can give results that are very misleading, resulting in inaccuracy in parameter estimation of the model as well as inaccurate return level estimates. Reduction of the aberration due to such a small amount of data is essential. A widely used method of reducing the error is to increase the sample size or increase the amount of data into extreme value analysis. Data can only be added if the block time method is used in the analysis. The distribution in this case is called the Generalized Extreme Value Distribution for the r largest order statistics (GEVr). The model derived from the analysis appears to be more suitable for the data. Moreover, parameter estimation and return level estimation would yield more reliable results

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āđˆāļēāļŠāļļāļ”āļ‚āļĩāļ”: āļ āļēāļĒāđƒāļ•āđ‰āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ„āļĄāđˆāļ„āļ‡āļ—āļĩāđˆExtreme Value Analysis: Non–stationary Process

    No full text
    āļ„āđˆāļēāļŠāļļāļ”āļ‚āļĩāļ” (Extreme value) āļŦāļĄāļēāļĒāļ–āļķāļ‡ āđ€āļ‹āļ•āļ‚āļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļ„āđˆāļēāļŠāļđāļ‡āļŠāļļāļ” āļŦāļĢāļ·āļ­ āļ„āđˆāļēāļ•āđˆāļģāļŠāļļāļ” āļ—āļĩāđˆāļ­āļĒāļđāđˆāđƒāļ™āđ€āļŦāļ•āļļāļāļēāļĢāļ“āđŒāļŠāļļāļ”āļ‚āļĩāļ” (Extreme event) āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļāļēāļĢāļŦāļēāđ‚āļ­āļāļēāļŠāļ—āļĩāđˆāļˆāļ°āđ€āļāļīāļ”āđ€āļŦāļ•āļļāļāļēāļĢāļ“āđŒāļŠāļļāļ”āļ‚āļĩāļ”āđƒāļ™āļ­āļ”āļĩāļ•āļ§āđˆāļēāļˆāļ°āđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđ„āļ”āđ‰āļ­āļĩāļāđƒāļ™āļ­āļ™āļēāļ„āļ•āļŦāļĢāļ·āļ­āđ„āļĄāđˆāļ™āļąāđ‰āļ™ āļ„āļ·āļ­āļāļēāļĢāļ—āļĩāđˆāļ™āļąāļāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļžāļĒāļēāļĒāļēāļĄāļŠāļĢāđ‰āļēāļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļĩāđˆāļ”āļĩāļ—āļĩāđˆāļŠāļļāļ”āļŠāļģāļŦāļĢāļąāļšāļ„āđˆāļēāļŠāļļāļ”āļ‚āļĩāļ”āļ—āļĩāđˆāļĻāļķāļāļĐāļē āļ‹āļķāđˆāļ‡āļ™āļąāļāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŠāđˆāļ§āļ™āđƒāļŦāļāđˆāļĄāļąāļāļˆāļ°āļ•āļąāļ”āļ‚āđ‰āļ­āļĄāļđāļĨāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ—āļīāđ‰āļ‡āđ„āļ›āđ„āļĄāđˆāļ™āļģāļĄāļēāļžāļīāļˆāļēāļĢāļ“āļēāđƒāļ™āļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨāđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āļĄāļĩāļ„āļ§āļēāļĄāļ‹āļąāļšāļ‹āđ‰āļ­āļ™āđāļĨāļ°āļĒāļļāđˆāļ‡āļĒāļēāļ āđāļ•āđˆāđƒāļ™āļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļˆāļĢāļīāļ‡āļ–āđ‰āļēāļ™āļąāļāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ—āļĢāļēāļšāļ„āļ§āļēāļĄāļ™āđˆāļēāļˆāļ°āđ€āļ›āđ‡āļ™āļŦāļĢāļ·āļ­āđ‚āļ­āļāļēāļŠāļ‚āļ­āļ‡āđ€āļŦāļ•āļļāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āļŠāļļāļ”āļŦāļĢāļ·āļ­āļ•āđˆāļģāļŠāļļāļ”āļ‹āļķāđˆāļ‡āļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ™āļ›āļĨāļēāļĒāļŦāļēāļ‡āļ—āļĩāđˆāļĄāļĩāļˆāļģāļ™āļ§āļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļ™āđ‰āļ­āļĒāļĄāļēāļ āļ‹āļķāđˆāļ‡āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāļĄāļĩāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāđ€āļ›āđ‡āļ™āļ„āđˆāļēāļŠāļļāļ”āļ‚āļĩāļ” āđ€āļ‡āļ·āđˆāļ­āļ™āđ„āļ‚āļŦāļ™āļķāđˆāļ‡āļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļ•āļĢāļ§āļˆāļŠāļ­āļšāļāđˆāļ­āļ™āļˆāļ°āļ™āļģāļ‚āđ‰āļ­āļĄāļđāļĨāđ„āļ›āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ•āđˆāļ­āđ€āļžāļ·āđˆāļ­āļŦāļēāļ„āđˆāļēāļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ‚āļ­āļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ„āļ·āļ­ āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāļ™āļģāļĄāļēāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ­āļĒāļđāđˆāļ āļēāļĒāđƒāļ•āđ‰āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđāļšāļšāđƒāļ” āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļ‡āļ—āļĩāđˆ (Stationary Process) āļŦāļĢāļ·āļ­āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ„āļĄāđˆāļ„āļ‡āļ—āļĩāđˆ (Non-stationary Process) āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļĄāļĩāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļĨāļ°āļ§āļīāļ˜āļĩāļāļēāļĢāđ€āļĨāļ·āļ­āļāļ•āļąāļ§āđāļšāļšāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ–āđ‰āļēāļŦāļēāļāđ„āļĄāđˆāļĄāļĩāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļĨāļąāļāļĐāļ“āļ°āļ‚āļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨ āļ­āļēāļˆāļˆāļ°āļ—āļģāđƒāļŦāđ‰āļœāļĨāļ›āļĢāļ°āļĄāļēāļ“āļ„āđˆāļēāļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ‚āļ­āļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļœāļīāļ”āļžāļĨāļēāļ” āđāļĨāļ°āļŠāđˆāļ‡āļœāļĨāļ–āļķāļ‡āļāļēāļĢāļ™āļģāđ„āļ›āđƒāļŠāđ‰āļ•āđˆāļ­āļ—āļĩāđˆāđ„āļĄāđˆāđ€āļāļīāļ”āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāđāļĨāļ°āļ­āļēāļˆāļˆāļ°āļŠāđˆāļ‡āļœāļĨāļĢāđ‰āļēāļĒāđāļĢāļ‡ āđ‚āļ”āļĒāđ€āļ‰āļžāļēāļ°āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨāđƒāļ™āļ”āđ‰āļēāļ™āļ—āļĩāđˆāļ•āđ‰āļ­āļ‡āđƒāļŠāđ‰āļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāļ‚āļ­āļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āđ€āļ›āđ‡āļ™āļ­āļĒāđˆāļēāļ‡āļĒāļīāđˆāļ‡Extreme value means a set of data that is the highest or lowest value in an extreme event that naturally occurs. Therefore, it is intended to find the opportunity to experience the extreme events in the past that will happen in the future. This includes the analysts to create the best model for the extreme values study. Most analysts tend to exclude the data and do not consider it in creating the model because the data is complicated and complex. However, in reality, they want to know the probability or opportunity of the event with the highest or lowest value, which is at the tail end with very little amount of data. In data analysis of the extreme features, it is necessary to check for the model parameters and consider the type of data to be analyzed whether the process is stationary or unstable process (non-stationary process). Since both processes have different analysis procedures and methods for selecting the suitable model, then, if there is no data considering process, the results might be incorrect causing an error in estimated parameter values of the model. Consequently, this might lead to useless utilization and serious outcomes particularly the data analysis process that requires high precision of the model

    Spatial Modeling of Extreme Temperature in Northeast Thailand

    No full text
    The objective of the present study was to examine and predict the annual maximum temperature in the northeast of Thailand by using data from 25 stations and employing spatial extreme modeling which is based on max-stable process (MSP) using schlatter&rsquo;s method. We analyzed extreme temperature data using the MSP using latitude, longitude, and altitude variables. Our result showed that the maximum temperature has an increasing trend. The return level estimates of the study areas from both the local generalized extreme value (GEV) model and MSP models show that the Nong Khai, Maha Sarakham, and Khon Kaen stations had higher return levels than the other stations for every return period, whereas Pak Chong Agromet had the lowest return levels. Furthermore, the results showed that MSP modeling is more suitable than point-wise GEV distribution. We realize that the spatial extreme modeling based on MSP provides more precise and robust return levels as well as some indices of the maximum temperatures for both the observation stations and the locations with no observed data. The results of this study are consistent with those of some previous studies. The increasing trend in return levels could affect agriculture and the surrounding environment in northeast Thailand. Spatial extreme modeling can be beneficial in the impact management and vulnerability assessment under extreme event scenarios caused by climate change
    corecore