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Abstract 

Statistical analysis of extreme events such as flood events is often carried out to predict large return 
period events. The behaviour of extreme events not only involves heavy-tailed distributions but also 

skewed distributions, similar to the four-parameter Kappa distribution (K4D). In general, this covers 

many extreme distributions such as the generalized logistic distribution (GLD), the generalized 
extreme value distribution (GEV), the generalized Pareto distribution (GPD), and so on. To utilize 

these distributions, we have to estimate parameters accurately. There are many parameter estimation 

methods, for example, Method of Moments, Maximum Likelihood Estimator, L-Moments, or partial 
L-Moments. Nowadays, no researchers have applied the partial L-Moments method to estimate the 

parameters of K4D. Therefore, the objective of this paper is to derive the partial L-Moments            
(PL-Moments) for K4D, namely the PL-Moments of the K4D in order to estimate hydrological 
extremes from censored data. The findings of this paper are formulas of parameter estimation for 

K4D based on the PL-Moments approach. We have derived the Partial Probability-Weighted 

Moments (PPWMs) of the K4D (𝛽𝑟
′) and derive the estimation of parameters when separated by 

shape parameters (𝑘, ℎ) conditions i.e., case 𝑘 > −1 and ℎ > 0, case 𝑘 > −1 and ℎ = 0 and case 

−1 < 𝑘 < −
1

ℎ
 and ℎ < 0. Finally, we expect that the parameter estimate for K4D from this formula 

will help to make accurate forecasts. 
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1- Introduction 

At present, extreme events often occur, such as the phenomenon of severe torrential rain causing flash flooding, severe 

snow both in-season and off-season, wildfires, heat waves, or sudden changes of temperature. Such extreme events cause 

severe disasters affecting humans, living creatures, and property. To solve these extreme problems, accurate forecasting 

of extreme events is helpful for planning and being able to cope with disasters. Accordingly, statistical analysis is an 

effective forecasting method that is widely used. 

When considering in depth the behaviours of extreme events, the data are in a heavy-tailed pattern or heavy-tailed 

distribution, especially the right heavy-tailed distribution known as the upper heavy-tailed distribution. For the upper 

heavy-tailed distribution, the four-parameter Kappa distribution consists of 1 location parameter (𝜉), 1 scale parameter 
(𝛼), and 2 shape parameters (𝑘, ℎ). If the value of the shape parameter changes, in the four-parameter Kappa distribution, 

the change of the shape distribution will be as follows. It becomes the generalized logistic distribution (GLD) in the case 

of 𝑘 ≠ 0, ℎ = −1, the generalized extreme value distribution (GEV) in the case of 𝑘 ≠ 0, ℎ = 0, the generalized Gumbel 

distribution (GGD) in the case of 𝑘 = 0, ℎ ≠ 0, and the generalized Pareto distribution (GPD) in the case of 𝑘 ≠ 0,       
ℎ = 1. Each distribution mentioned above is in a heavy-tailed pattern in accordance with the disaster.  
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The statistical analysis for parameter estimation is one effective forecasting method. Many methods for parameter 

estimation are available such as Method of Moments, Maximum Likelihood Estimator, L-Moments, partial L-Moments, 

and so on. Method of Moments is the oldest method, invented by Pearson [1]. The estimators obtained from this method 

are easily calculated so it is suitable for estimating a parameter with a small number of parameters. In general, the 

obtained estimator is consistent with little bias, but most obtained estimators are low-effective. In 1912, Fisher [2] 

developed the method of Maximum Likelihood Estimator which is a simple and widely-used estimation. Generally, the 

obtained estimators are effective and consistent. This estimation method is suitable for Gaussian asymptotic 

distributions. However, this method contains limitations that the obtained estimators are low-effective if the data are 

small, and the obtained estimation values contain high bias and variance.  

 Many parameter estimation methods have been developed such as L-Moments proposed by Hosking [3]. This method 

calculates estimators on the basis of linear function of expected values of order statistics. In comparing between the 

estimating results of small-sized data, the parameter-estimated values obtained from L-Moments are better than the 

values obtained from the method of Maximum Likelihood Estimator [4]. Therefore, this method of parameter estimation 

is widely applied in various disciplines such as engineering, quality control, meteorology, and hydrology [5, 6]. 

However, when using the data for estimating parameters and forecasting recurrence periods such as 50-year recurrence 

or 100-year recurrence, the forecasting values are obtained from the estimation of all data. The main forecasting objective 

is to plan for coping with disaster. Therefore, attention should be paid to the weight of data. Greenwood et al. [7] propose 

the method of Probability Weighted Moments (PWMs) to solve such problems. However, disaster events need to be 

specifically studied with extreme data. Therefore, the data are screened to use only the data with effects on extreme 

events for the analysis. These selected data are called censored samples and this parameter estimation method is called 

Partial Probability Weighted Moments (PPWMs) [8]. In addition, Wang [8] proposes the use of linear combination for 

PWMs as a new estimation method, known as partial L-Moments (PL-Moments). When comparing the results of 

parameter estimation of extreme events with the GEV distribution between PWMs and PPWMs, it is found that PPWMs 

gives better results of parameter estimation than PWMs. Moreover, it is also found that PL-Moments gives better results 

of parameter estimation than L-Moments [9, 10]. There are a variety of research studies about methods of parameter 

estimations with the four‑parameter Kappa distribution, such as Seenoi et al. [11] who proposed Bayesian parameter 

estimation with the four-parameter Kappa distribution. Ibrahim [12] studied parameter estimation in light of the 

L‑Moments with the four‑parameter Kappa distribution. Papukdee et al. [13] proposed a penalized likelihood approach 

for the four-parameter Kappa distribution. Shin & Park [14] derived parameter estimation using 𝑟-largest order statistics 

with the four-parameter Kappa distribution. Aranda [15] studied frequency analysis using L-Moments with the Kappa 

distribution. 

Nowadays, many events are extreme events, for example, floods, droughts, pollution and so forth, that may be 

regarded as special cases of a four-parameter Kappa distribution (K4D). There are some distributions which are special 

cases of K4D such as the generalized logistic distribution (GLD), the generalized extreme value distribution (GEV), the 

generalized Pareto distribution (GPD), and so on. The K4D is widely and flexibly applicable to the data including not 

only extreme values but also skewed data. Therefore, the objectives of this research are to derive the formulas using the 

PL-Moments approach to estimate the parameters of the K4D, namely PL-Moments of the K4D. 

2- Four Parameter Kappa Distribution 

In 1994, Hosking [16] presented the new distribution, namely the four parameter Kappa distribution (K4D) which 

exhibits heavy-tailed behaviour. There are four parameters in K4D: a location parameter (𝜉), a scale parameter (𝛼), and 

two shape parameters (𝑘, ℎ). Moreover, K4D is a parent distribution of the generalized extreme value distribution (GEV) 

if 𝑘 ≠ 0, ℎ = 0, the generalized logistic distribution (GLD) if 𝑘 ≠ 0, ℎ = −1, the generalized Gumbel distribution 

(GGD) if 𝑘 = 0, ℎ ≠ 0, and the generalized Pareto distribution (GPD) if 𝑘 ≠ 0, ℎ = 1. The cumulative distribution 

function (cdf) of the K4D is [16]: 

 

𝐹(𝑥) =

{
 
 
 
 

 
 
 
 
{1 − ℎ [1 −

𝑘(𝑥−𝜉)

𝛼

1

𝑘
]}

1

ℎ

; 𝑘 ≠ 0, ℎ ≠ 0,−∞ < 𝑥 < ∞           

𝑒𝑥𝑝 {− [1 −
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𝛼
]

1

𝑘
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𝛼
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1

ℎ
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𝛼
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(1) 
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The probability density function (pdf) of the K4D is: 

𝑓(𝑥) =

{
 
 
 

 
 
 1
𝛼
[1 −

𝑘(𝑥−𝜉)

𝛼
]

1

𝑘
−1
[𝐹(𝑥)]1−ℎ; 𝑘 ≠ 0, ℎ ≠ 0,−∞ < 𝑥 < ∞

1

𝛼
[1 −
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𝛼
]

1

𝑘
−1
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1

𝛼
[exp (−

(𝑥−𝜉)

𝛼
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1

𝛼
[exp (−

(𝑥−𝜉)

𝛼
)] 𝐹(𝑥); 𝑘 = 0, ℎ = 0,−∞ < 𝑥 < ∞         

, 

 

(2) 

The quantile function (qf) of the K4D is: 

𝑥(𝐹) =

{
  
 

  
 𝜉 +

𝛼

𝑘
[1 − (

1−𝐹ℎ

ℎ
)
2

] ; 𝑘 ≠ 0, ℎ ≠ 0

𝜉 +
𝛼

𝑘
[1 − (−𝑙𝑛𝐹)𝑘]; 𝑘 ≠ 0, ℎ = 0

𝜉 − 𝛼𝑙𝑛 (
1−𝐹ℎ

ℎ
) ; 𝑘 = 0, ℎ ≠ 0

𝜉 − 𝛼𝑙𝑛(−𝑙𝑛𝐹); 𝑘 = 0, ℎ = 0          

, 

 

(3) 

Figure 1 presents some of the possible shapes of 𝑓(𝑥) for the K4D with different values of 𝑘 and ℎ, where 𝜉 = 0 and 

𝛼 = 1. 

 
 
 

 
 

Figure 1. Shape of the pdf of the K4D plotted for various shape parameters 

(a) (b) 

(c) 
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Apart from the above noted specific cases, the K4D is an exponential distribution if 𝑘 = 0, ℎ = 1, a Gumbel 

distribution if 𝑘 = 0, ℎ = 0, a logistic distribution if 𝑘 = 0, ℎ = −1, and a uniform distribution if 𝑘 = 1, ℎ = 1 [16]. 

Interested readers are referred to Hosking [16] for more details of the derivation, properties of this distribution, shapes 

of the pdf, and relations to the three parameter Kappa and Burr distributions. Winchester [17] has used artificial data 

using K4D. 

For the estimation of parameters of the K4D, Hosking [16] used the L-Moments method, which gives more reliable 

performance than the Method of Moments and is usually computationally more tractable than the MLE. L-Moment 

estimates of K4D have been important for regional frequency analysis [18]. Winchester [17] compared the performance 

of MLE and L-Moments in this distribution. Park and Park [19] presented the method of Maximum Likelihood to 

estimate the parameters of K4D, while Park and Yoon Kim [20] investigated the Fisher information matrix for K4D. 

Moreover, Park et al. [21] studied a three-parameter Kappa distribution, including the comparison of MLE and L-

Moment estimates. Murshed et al. [22] investigated the LH-Moment method for K4D. 

3- Method of Partial L-Moments 

The Probability-Weighted Moments (PWMs) is the precursor of L-Moments [7]. The PWMs can be defined as 𝛽𝑟 

which is 𝑝 = 1 and 𝑠 = 0 of 𝑀𝑝,𝑟,𝑠 where 𝑀𝑝,𝑟,𝑠 = ∫ [𝑥(𝐹)]𝑝𝐹𝑟(1 − 𝐹)𝑠𝑑𝐹
1

0
. 

So, 𝛽𝑟 = ∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1

0
; 𝑟 = 0, 1, 2, . .. (4) 

Wang [9] has extended PWMs to Partial Probability-Weighted Moments (PPWMs) for analysing censored data. He 

defined the formula of the PPWMs as: 

𝛽𝑟
/
=

∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1
𝐹0

1−𝐹0
𝑟+1 ; 𝑟 = 0, 1, 2, . ..  (5) 

where 0 ≤ 𝐹0 = 𝐹(𝑥0) ≤ 1, when 𝐹0 = 0, the 𝛽𝑟
/
 becomes 𝛽𝑟 and 𝑥0 being the censoring threshold. 

In terms of PPWMs, the first four PL-Moments (𝜆1
/
, 𝜆2
/
, 𝜆3
/
 and 𝜆4

/
) have similar properties to the first four L-Moments  

[18]:  

the measure of the location:  𝜆1
/
= 𝛽0

/
, (6) 

the characteristics of the spread:  𝜆2
/
= 2𝛽1

/
− 𝛽0

/
, (7) 

the reflects of the asymmetry of the upper part: 𝜆3
/
= 6𝛽2

/
− 6𝛽1

/
+ 𝛽0

/
, (8) 

the reflects of the peak of the upper part: 𝜆4
/
= 20𝛽3

/
− 30𝛽2

/
+ 12𝛽1

/
− 𝛽0

/
, (9) 

and PL-Moments ratio such as PL-coefficient of variation, PL-skewness and PL-kurtosis are written as:  

PL-coefficient of variation:  𝜏2
/
=

𝜆2
/

𝜆1
/ , (10) 

PL-skewness:   𝜏3
/
=

𝜆3
/

𝜆2
/ , (11) 

PL-kurtosis:   𝜏4
/
=

𝜆4
/

𝜆2
/ . (12) 

The procedures for processing this research are shown in Figure 2. 

In the next Section, the above properties were used to derive PL-Moments of the K4D. 

4- Results 

4-1- PL-Moments of the K4D 

Theorem 1: The L-Moments 𝜆𝑟, 𝑟 = 1,2,3, . .. of a real-valued random variable 𝑋 exist if and only if 𝑋 has a finite 

mean. 

Therefore, the mean of the K4D exists if 𝑘 > −1and ℎ ≥ 0 or −1 < 𝑘 < −
1

ℎ 
and ℎ < 0 [23]. It can be divided into  

6 cases as follows:  

when 𝑘 ≠ 0, there are 3 cases,  case 1 𝑘 > −1and ℎ > 0, 

                               case 2 𝑘 > −1and ℎ = 0, 

                               case 3 −1 < 𝑘 < −
1

ℎ
 and ℎ < 0, 
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when 𝑘 = 0, there are 3 cases, case 4 ℎ > 0, 

                               case 5 ℎ = 0, 

                                             case 6 ℎ < 0. 

 

Figure 2. The procedures of the research methodology 

From above 6 cases, the cdf and qf of the K4D are defined as (1) and (3), respectively. The PPWMs (𝛽𝑟
/
) of the K4D 

are derived as: 

when 𝑘 ≠ 0 

1. Case: 𝑘 > −1 and ℎ > 0; 

∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1

𝐹0
 = ∫ {𝜉 +

𝛼

𝑘
[1 − (

1−𝐹ℎ

ℎ
)
𝑘

]} 𝐹𝑟𝑑𝐹
1

𝐹0
=

1

𝑟+1
(𝜉 +

𝛼

𝑘
) (1 − 𝐹0

𝑟+1) −
𝛼

𝑘
∫ (

1−𝐹ℎ

ℎ
)
𝑘

𝐹𝑟𝑑𝐹
1

𝐹0
 (13) 

consider the second term of Equation 13, 

let 𝑣 = 1 − 𝐹ℎ , then 

𝛼

𝑘
∫ (

1−𝐹ℎ

ℎ
)
𝑘

𝐹𝑟𝑑𝐹
1

𝐹0
 =

1

ℎ
𝑘+1

𝛼

𝑘
∫ 𝑣𝑘(1 − 𝑣)

𝑟+1

ℎ
−1𝑑𝑣

1−𝐹0
ℎ

0
=

1

ℎ
𝑘+1

𝛼

𝑘
𝛣1−𝐹0ℎ

(𝑘 + 1,
𝑟+1

ℎ
). (14) 

Substitute Equation 14 into Equation 13, then 

 ∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1

𝐹0
=

1

𝑟+1
(𝜉 +

𝛼

𝑘
) (1 − 𝐹0

𝑟+1) −
1

ℎ𝑘+1
𝛼

𝑘
𝛣1−𝐹0ℎ (𝑘 + 1,

𝑟+1

ℎ
). So, 
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𝛽𝑟
/
=

1

𝑟+1
(𝜉 +

𝛼

𝑘
) −

1

(1−𝐹0
𝑟+1)

𝛼

𝑘ℎ𝑘+1
𝛣1−𝐹0ℎ

(𝑘 + 1,
𝑟+1

ℎ
)  (15) 

2. Case: 𝑘 > −1 and ℎ = 0; 

∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1

𝐹0

= ∫ {𝜉 +
𝛼

𝑘
[1 − (− 𝑙𝑛 𝐹)𝑘]} 𝐹𝑟𝑑𝐹

1

𝐹0

=
1

𝑟 + 1
(𝜉 +

𝛼

𝑘
) (1 − 𝐹0

𝑟+1) −
𝛼

𝑘
∫ (− 𝑙𝑛 𝐹)𝑘𝐹𝑟𝑑𝐹
1

𝐹0

 (16) 

consider the second term of Equation 16, 

let 𝑢 = − 𝑙𝑛 𝐹, then 

 
𝛼

𝑘
∫ (− 𝑙𝑛 𝐹)𝑘𝐹𝑟𝑑𝐹
1

𝐹0
=

𝛼

𝑘
∫ 𝑢𝑘𝑒−𝑢(𝑟+1)𝑑𝑢
− 𝑙𝑛 𝐹0
0

 

and let 𝑣 = −(𝑟 + 1)𝑢, then 

  
𝛼

𝑘
∫ 𝑢𝑘𝑒−𝑢(𝑟+1)𝑑𝑢
− 𝑙𝑛 𝐹0
0

 =
1

(𝑟+1)𝑘+1

𝛼

𝑘
∫ 𝑣(𝑘+1)−1𝑒−𝑣𝑑𝑣
−(𝑟+1) 𝑙𝑛 𝐹0
0

=
1

(𝑟+1)𝑘+1

𝛼

𝑘
[𝛾(𝑘 + 1,−(𝑟 + 1) 𝑙𝑛 𝐹0)]. (17) 

Substitute Equation 17 into Equation 16, then 

 ∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1

𝐹0
 =  

1

𝑟+1
(𝜉 +

𝛼

𝑘
) (1 − 𝐹0

𝑟+1) −
1

(𝑟+1)𝑘+1

𝛼

𝑘
[𝛾(𝑘 + 1, (𝑟 + 1) 𝑙𝑛 𝐹0)]. So,  

𝛽𝑟
/ =

1

𝑟+1
(𝜉 +

𝛼

𝑘
) −

1

(𝑟+1)𝑘+1(1−𝐹0
𝑟+1)

𝛼

𝑘
[𝛾(𝑘 + 1,−(𝑟 + 1) 𝑙𝑛 𝐹0)]  (18) 

3. Case: −1 < 𝑘 < −
1

ℎ
 and ℎ < 0; 

∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1

𝐹0
 = ∫ {𝜉 +

𝛼

𝑘
[1 − (

1−𝐹ℎ

ℎ
)
𝑘

]} 𝐹𝑟𝑑𝐹
1

𝐹0
=

1

𝑟+1
(𝜉 +

𝛼

𝑘
) (1 − 𝐹0

𝑟+1) −
𝛼

𝑘
∫ (

𝐹ℎ−1

−ℎ
)
𝑘

𝐹𝑟𝑑𝐹
1

𝐹0
 (19) 

consider the second term of Equation 19, 

𝛼

𝑘
∫ (

𝐹ℎ−1

−ℎ
)
𝑘

𝐹𝑟𝑑𝐹
1

𝐹0
 =

𝛼

𝑘
(
1

−ℎ
)
𝑘

∫ (𝐹ℎ − 1)
𝑘
𝐹𝑟𝑑𝐹

1

𝐹0
 

let 𝑢 = 𝐹ℎ − 1, then 

𝛼

𝑘
(
1

−ℎ
)
𝑘

∫ (𝐹ℎ − 1)
𝑘
𝐹𝑟𝑑𝐹

1

𝐹0
 =

𝛼

𝑘
(
1

−ℎ
)
𝑘+1

∫ 𝑢𝑘(𝑢 + 1)
𝑟+1

ℎ
−1𝑑𝑢

𝐹0
ℎ−1

0
=

1

(−ℎ)𝑘+1

𝛼

𝑘
𝛣𝐹0ℎ−1

(𝑘 + 1,−
𝑟+1

ℎ
− 𝑘). (20) 

Substitute Equation 20 into Equation 19, then 

 ∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1

𝐹0
=

1

𝑟+1
(𝜉 +

𝛼

𝑘
) (1 − 𝐹0

𝑟+1) −
𝛼

𝑘(−ℎ)𝑘+1
𝛣𝐹0ℎ−1

(𝑘 + 1, −
𝑟+1

ℎ
− 𝑘). So, 

𝛽𝑟
/ =

1

𝑟+1
(𝜉 +

𝛼

𝑘
) −

1

(1−𝐹0
𝑟+1)

𝛼

𝑘(−ℎ)𝑘+1
𝛣𝐹0ℎ−1

(𝑘 + 1,−
𝑟+1

ℎ
− 𝑘). (21) 

Therefore, in case of 𝑘 ≠ 0 we can conclude as follows; 

 (𝑟 + 1)𝛽𝑟
/
=

{
 
 

 
 𝜉 +

𝛼

𝑘
[1 −

𝑟+1

(1−𝐹0
𝑟+1)

1

ℎ
𝑘+1 𝛣1−𝐹0ℎ

(𝑘 + 1,
𝑟+1

ℎ
)] ; 𝑘 > −1, ℎ > 0

𝜉 +
𝛼

𝑘
[1 −

1

(𝑟+1)𝑘(1−𝐹0
𝑟+1)

[𝛾(𝑘 + 1,−(𝑟 + 1) 𝑙𝑛 𝐹0)]] ; 𝑘 > −1, ℎ = 0

𝜉 +
𝛼

𝑘
[1 −

𝑟+1

(1−𝐹0
𝑟+1)

1

(−ℎ)𝑘+1
𝛣𝐹0ℎ−1

(𝑘 + 1,−
𝑟+1

ℎ
− 𝑘)] ; −1 < 𝑘 < −

1

ℎ
, ℎ < 0

 

In a similar way, when 𝑘 = 0 we get 

(𝑟 + 1)𝛽𝑟
/
=

{
 
 

 
 𝜉 + 𝛼 [𝑙𝑛 ℎ+

1

1−𝐹0
𝑟+1𝐷(𝑎)|0

1−𝐹0
ℎ

] ; ℎ > 0

𝜉 +
𝛼

(1−𝐹0
𝑟+1)

[𝜀 + 𝑙𝑛( 𝑟 + 1) + 𝑙𝑛( − 𝑙𝑛 𝐹0)𝐹0
𝑟+1 + 𝐸1[−(𝑟 + 1) 𝑙𝑛 𝐹0]]; ℎ = 0.

𝜉 + 𝛼 [𝑙𝑛(−ℎ) +
1

1−𝐹0
𝑟+1𝐻(𝑏)|0

𝐹0
ℎ−1
] ; ℎ < 0
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where 1. 

1
11

2 1

(1 ) 1 1
( ) (1 ) ln (1, 1; 2;1 )

1

r
r

h
h

h a r r
D a a a F a

r h h h

+
++

− + +
= − + + + −

+ +
.          

2. 

1 1 1

2 1

0

( ) (1 )
( , ; ; )

( ) ( ) (1 )

b c b

a

c t t
F a b c z dt

b c b tz

− − − −
=
  − −  is a hypergeometric function. 

  3. 1E [ ]
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Z d
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= 
1

( 1)
ln ; arg

!

n n

n

z
z z

nn
 



=

−
= − − −   when 0.5772 =  is Euler’s constant.  

  4. 

1
11

2 1

( 1) 1 1
( ) ( 1) ln (1, 1; 2; 1)

1

r
r

h
h

h b r r
H b b b F b

r h h h

+
++

+ + +
= + + + + +

+ +
. 

By the formula of (𝑟 + 1)𝛽𝑟
/
, we can compute the first four PL-Moments (𝜆1

/
, 𝜆2
/
, 𝜆3
/
 and 𝜆4

/
), PL-skewness and PL- 

kurtosis from Equations 6 to 12, respectively. 

4-2- PL-Moments Parameter Estimation for the K4D 

Under the assumption that 𝐹0 is known, Wang [9] presented formula of the unbiased estimator for 𝛽𝑟
/
 as;𝑟 = 0,1,2, . .. 

�̂�𝑟
/
=

1

1−𝐹0
𝑟+1

1

𝑛
∑

(𝑖−1)(𝑖−2)...(𝑖−𝑟)

(𝑛−1)(𝑛−2)...(𝑛−𝑟)

𝑛
𝑖=1 𝑥(𝑖)

/
  (22) 

where 𝑥(𝑖)
/
= {

0; 𝑥(𝑖) ≤ 𝑥0
𝑥(𝑖); 𝑥(𝑖) > 𝑥0

and (1) (2) ( )... nx x x  
 

If 𝐹0 is unknown then �̂�0 =
𝑛0

𝑛
, when 𝑛0 is the number of the sample which do not exceed the threshold 𝑥0 of the 𝑛 

event. 

Therefore, in this study, we derived the first four sample PL-Moments, �̂�1
/
, �̂�2
/
, �̂�3
/
and �̂�4

/
, are unbiased estimators of  

PL-Moments, 𝜆1
/
, 𝜆2
/
, 𝜆3
/
and 𝜆4

/
 as follows: 

�̂�1
/
=

1

𝑛2(1−�̂�0)
∑ 𝑖𝑥(𝑖)

/𝑛
𝑖=1 , (23) 

�̂�2
/
=

1

𝑛
[

2

(𝑛−1)(1−�̂�0
2)
∑ 𝑖𝑥(𝑖+1)

/𝑛−1
𝑖=1 −

1

𝑛(1−�̂�0)
∑ 𝑖𝑥(𝑖)

/𝑛
𝑖=1 ], (24) 

�̂�3
/
=

1

𝑛
[

6

(𝑛−1)(𝑛−2)(1−�̂�0
3)
∑ 𝑖(𝑖 + 1)𝑥(𝑖+2)

/𝑛−2
𝑖=1 −

6

(𝑛−1)(1−�̂�0
2)
∑ 𝑖𝑥(𝑖+1)

/𝑛−1
𝑖=1 +

1

𝑛(1−�̂�0)
∑ 𝑖𝑥(𝑖)

/𝑛
𝑖=1 ], (25) 

�̂�4
/
=

1

𝑛
[

20

(𝑛−1)(𝑛−2)(𝑛−3)(1−�̂�0
4)
∑ 𝑖(𝑖 + 1)(𝑖 + 2)𝑥(𝑖+3)

/𝑛−3
𝑖=1 −

30

(𝑛−1)(𝑛−2)(1−�̂�0
3)
∑ 𝑖(𝑖 + 1)𝑥(𝑖+2)

/𝑛−2
𝑖=1

+
12

(𝑛−1)(1−�̂�0
2)
∑ 𝑖𝑥(𝑖+1)

/𝑛−1
𝑖=1 −

1

𝑛(1−�̂�0)
∑ 𝑖𝑥(𝑖)

/𝑛
𝑖=1

], (26) 

while the sample PL-Moments ratio, �̂�𝑟
/
, are unbiased estimators of the PL-Moments ratio, 𝜏𝑟

/
 as follows: 

the sample PL-skewness, �̂�3
/
=

�̂�3
/

�̂�2
/  and sample PL-kurtosis, �̂�4

/
=

�̂�4
/

�̂�2
/  . (27) 

Hosking [16] has provided the conditions on the parameters of K4D for the existence of L-Moments (conditions 1 

and 2) and for the uniqueness of the parameters (conditions 3 and 2). The PL-Moments of K4D are determined by the 

following four conditions below: 

1. 𝑘 > −1 

2. if ℎ < 0, then 𝑘ℎ > −1 

3. ℎ > −1 

4. 𝑘 + 0.752ℎ > −1 

We used the above nonlinear constraints and augmented Lagrangian adaptive barrier minimization algorithm, a non-

linear optimization algorithm, to estimate parameters (�̂�, �̂�, and ℎ̂), which set the nonlinear objective function converting 

to zero, written as [24]: 

𝑓(𝛼, 𝑘, ℎ) = (𝜆2
/
− �̂�2

/
)2 + (𝜆3

/
− �̂�3

/
)2 + (𝜆4

/
− �̂�4

/
)2 ≥ 0  (28) 
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Therefore, the estimates of  𝜉 are obtained by plugging �̂�, �̂� and ℎ̂, from (28), into 𝜆1
/
, we have shown derived formulas  

of  𝜉 in 3 cases, when 𝑘 ≠ 0, as follows: 

case 𝑘 > −1 and ℎ > 0, 

𝜉 = �̂�1
/
−

�̂�

�̂�
[1 −

1

ℎ̂
�̂�+1

1

(1−�̂�0)
𝛣
1−�̂�0

ℎ̂ (�̂� + 1,
1

ℎ̂
)], (29) 

case 𝑘 > −1 and ℎ = 0, 

𝜉 = �̂�1
/
−

�̂�

�̂�
[1 −

1

(1−�̂�0)
[𝛾(�̂� + 1,−𝑙𝑛�̂�0)]], (30) 

case −1 < 𝑘 < −
1

ℎ
and ℎ < 0, 

𝜉 = �̂�1
/
−

�̂�

�̂�
[1 −

1

(ℎ̂)�̂�+1

1

(1−�̂�0)
𝛣
�̂�0
ℎ̂−1

(�̂� + 1,−
1

ℎ̂
− �̂�)]. (31) 

From the results, we got the new formula to estimate the parameters of K4D using the PL-Moments approach. 

5- Conclusions 

The four-parameter Kappa distribution, K4D, is a well-known and flexible applicable distribution to the real data 

including extreme events or skewed events. Form the literature review, we found that the PL-Moments method gives 

better results of parameter estimation than L-Moments of the generalized extreme value distribution, GEV, which is a 

three parameter Kappa distribution when 𝑘 ≠ 0and ℎ = 0. Therefore, in this study, the new modification of formulas to 

estimate parameters based on the PL-Moments for K4D has been proposed. We have derived the Partial Probability-

Weighted Moments (PPWMs) of the K4D (𝛽𝑟
/
): there are 6 cases as follows: 

when 𝑘 ≠ 0, (𝑟 + 1)𝛽𝑟
/
=

{
 
 

 
 𝜉 +

𝛼

𝑘
[1 −

𝑟+1

(1−𝐹0
𝑟+1)

1

ℎ
𝑘+1𝛣1−𝐹0ℎ

(𝑘 + 1,
𝑟+1

ℎ
)] ; 𝑘 > −1, ℎ > 0

𝜉 +
𝛼

𝑘
[1 −

1

(𝑟+1)𝑘(1−𝐹0
𝑟+1)

[𝛾(𝑘 + 1,−(𝑟 + 1) 𝑙𝑛 𝐹0)]] ; 𝑘 > −1, ℎ = 0

𝜉 +
𝛼

𝑘
[1 −

𝑟+1

(1−𝐹0
𝑟+1)

1

(−ℎ)𝑘+1
𝛣𝐹0ℎ−1

(𝑘 + 1,−
𝑟+1

ℎ
− 𝑘)] ; −1 < 𝑘 < −

1

ℎ
, ℎ < 0

, 

when 𝑘 = 0, (𝑟 + 1)𝛽𝑟
/
=

{
 
 

 
 𝜉 + 𝛼 [𝑙𝑛 ℎ+

1

1−𝐹0
𝑟+1𝐷(𝑎)|0

1−𝐹0
ℎ

] ; ℎ > 0

𝜉 +
𝛼

(1−𝐹0
𝑟+1)

[𝜀 + 𝑙𝑛( 𝑟 + 1) + 𝑙𝑛( − 𝑙𝑛 𝐹0)𝐹0
𝑟+1 + 𝐸1[−(𝑟 + 1) 𝑙𝑛 𝐹0]]; ℎ = 0.

𝜉 + 𝛼 [𝑙𝑛(−ℎ) +
1

1−𝐹0
𝑟+1𝐻(𝑏)|0

𝐹0
ℎ−1
] ; ℎ < 0

 

We have derived new formulas to estimate parameters of K4D with the PL-Moments method (𝜉, �̂�, �̂�, and ℎ̂), when 

𝜉 is an unbiased estimator of a location parameter, �̂� is an unbiased estimator of a scale parameter, and �̂� and ℎ̂ are 

unbiased estimators of shape parameters. There are 3 cases when 𝑘 ≠ 0 to derive the estimation of the shape parameters 

(𝑘, ℎ), case 1, 𝑘 > −1 and ℎ > 0, case 2, 𝑘 > −1 and ℎ = 0, and case 3,−1 < 𝑘 < −
1

ℎ
 and ℎ < 0.  

We used the nonlinear constraints and augmented Lagrangian adaptive barrier minimization algorithm to estimate the 

parameters (�̂�, �̂�, andℎ̂), followed by condition of 𝑓(𝛼, 𝑘, ℎ) = (𝜆2
/
− �̂�2

/
)2 + (𝜆3

/
− �̂�3

/
)2 + (𝜆4

/
− �̂�4

/
)2 ≥ 0.  

Therefore, the estimates of 𝜉 are obtained by plugging �̂�, �̂� and ℎ̂, from Equation 28, into 𝜆1
/
, we have shown derived  

formulas of 𝜉 in 3 cases, when 𝑘 ≠ 0, as follows: 

case 𝑘 > −1 and ℎ > 0, 𝜉 = �̂�1
/
−

�̂�

�̂�
[1 −

1

ℎ̂
�̂�+1

1

(1−�̂�0)
𝛣
1−�̂�0

ℎ̂ (�̂� + 1,
1

ℎ̂
)],   

case 𝑘 > −1 and ℎ = 0, 𝜉 = �̂�1
/
−

�̂�

�̂�
[1 −

1

(1−�̂�0)
[𝛾(�̂� + 1,−𝑙𝑛�̂�0)]],   

case −1 < 𝑘 < −
1

ℎ
 and ℎ < 0, 𝜉 = �̂�1

/
−

�̂�

�̂�
[1 −

1

(−ℎ̂)�̂�+1

1

(1−�̂�0)
𝛣
�̂�0
ℎ̂−1

(�̂� + 1,−
1

ℎ̂
− �̂�)]. 

Moreover, this new derived formula can be applied to predict return levels for the planning and management of many 

extreme events. For our future research, we will apply this parameter estimation formula to real events, for example, 

extreme temperature data, flood data, wave data, and wind data. 
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