1,358 research outputs found

    Field theoretic description of the abelian and non-abelian Josephson effect

    Full text link
    We formulate the Josephson effect in a field theoretic language which affords a straightforward generalization to the non-abelian case. Our formalism interprets Josephson tunneling as the excitation of pseudo-Goldstone bosons. We demonstrate the formalism through the consideration of a single junction separating two regions with a purely non-abelian order parameter and a sandwich of three regions where the central region is in a distinct phase. Applications to various non-abelian symmetry breaking systems in particle and condensed matter physics are given.Comment: 10 pages no figure

    Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L18606, doi:10.1029/2008GL035007.We present new flow-weighted data for δ 18OH2O, dissolved organic carbon (DOC), dissolved barium and total alkalinity from the six largest Arctic rivers: the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie. These data, which can be used to trace runoff, are based upon coordinated collections between 2003 and 2006 that were temporally distributed to capture linked seasonal dynamics of river flow and tracer values. Individual samples indicate significant variation in the contributions each river makes to the Arctic Ocean. Use of these new flow-weighted estimates should reduce uncertainties in the analysis of freshwater transport and fate in the upper Arctic Ocean, including the links to North Atlantic thermohaline circulation, as well as regional water mass analysis. Additional improvements should also be possible for assessing the mineralization rate of the globally significant flux of terrigenous DOC contributed to the Arctic Ocean by these major rivers.Supported by the U.S. National Science Foundation (OPP-0229302), the U.S. Geological Survey and the Water Resources Division of Canada’s Department of Indian Affairs and Northern Development

    The variable origin of the lateral circumflex femoral artery: a meta-analysis and proposal for a new classification system

    Get PDF
    The lateral circumflex femoral artery (LCFA) is responsible for vascularisation of the head and neck of the femur, greater trochanter, vastus lateralis and the knee. The origin of the LCFA has been reported to vary significantly throughout the literature, with numerous branching patterns described and variable distances to the mid-inguinal point reported. The aim of this study was to determine the estimated population prevalence and pooled means of these anatomical characteristics, and review their associated clinical relevance. A search of the major electronic databases was performed to identify all articles reporting data on the origin of the lateral circumflex femoral artery and its distance to the mid-inguinal point. Additionally, an extensive search of the references of all relevant articles was performed. All data on origin, branching, and distance to mid-inguinal point was extracted and pooled into a meta-analysis. A total of 26 articles (n = 3731 lower limbs) were included in the meta-analysis. Lateral circumflex femoral artery most commonly originates from the deep femoral artery with a pooled prevalence of 76.1% (95% confidence interval 69.4–79.3). The deep femoral artery-derived lateral circumflex femoral artery was found to originate with a mean pooled distance of 51.06 mm (95% confidence interval 44.61–57.51 mm) from the mid-inguinal point. Subgroup analysis of both gender and limb side data were consistent with these findings. Due to variability in the lateral circumflex femoral artery’s origin and distance to mid-inguinal point, anatomical knowledge is crucial for clinicians to avoid iatrogenic injuries when performing procedures in the femoral region, and thus radiographic assessment prior to surgery is recommended. Lastly, we propose a new classification system for origin of the lateral circumflex femoral arter

    The mitochondrial tRNA-derived fragment, mt-tRF-Leu<sup>TAA</sup>, couples mitochondrial metabolism to insulin secretion.

    Get PDF
    The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; ) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown. This study aimed to characterize the impact of mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; , on mitochondrial metabolism and pancreatic islet functions. We used antisense oligonucleotides to reduce mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; levels in primary rat and human islet cells, as well as in insulin-secreting cell lines. We performed a joint transcriptome and proteome analysis upon mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; inhibition. Additionally, we employed pull-down assays followed by mass spectrometry to identify direct interactors of the fragment. Finally, we characterized the impact of mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; silencing on the coupling between mitochondrial metabolism and insulin secretion using high-resolution respirometry and insulin secretion assays. Our study unveils a modulation of mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; levels in pancreatic islets in different Type 2 diabetes models and in response to changes in nutritional status. The level of the fragment is finely tuned by the mechanistic target of rapamycin complex 1. Located within mitochondria, mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; interacts with core subunits and assembly factors of respiratory complexes of the electron transfer system. Silencing of mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; in islet cells limits the inner mitochondrial membrane potential and impairs mitochondrial oxidative phosphorylation, predominantly by affecting the Succinate (via Complex II)-linked electron transfer pathway. Lowering mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; impairs insulin secretion of rat and human pancreatic β-cells. Our findings indicate that mt-tRF-Leu &lt;sup&gt;TAA&lt;/sup&gt; interacts with electron transfer system complexes and is a pivotal regulator of mitochondrial oxidative phosphorylation and its coupling to insulin secretion

    Genetic and Informatic Analyses Implicate Kif12 as a Candidate Gene within the Mpkd2 Locus That Modulates Renal Cystic Disease Severity in the Cys1cpk Mouse.

    Get PDF
    We have previously mapped the interval on Chromosome 4 for a major polycystic kidney disease modifier (Mpkd) of the B6(Cg)-Cys1cpk/J mouse model of recessive polycystic kidney disease (PKD). Informatic analyses predicted that this interval contains at least three individual renal cystic disease severity-modulating loci (Mpkd1-3). In the current study, we provide further validation of these predicted effects using a congenic mouse line carrying the entire CAST/EiJ (CAST)-derived Mpkd1-3 interval on the C57BL/6J background. We have also generated a derivative congenic line with a refined CAST-derived Mpkd1-2 interval and demonstrated its dominantly-acting disease-modulating effects (e.g., 4.2-fold increase in total cyst area;

    A method for the reconstruction of unknown non-monotonic growth functions in the chemostat

    Get PDF
    We propose an adaptive control law that allows one to identify unstable steady states of the open-loop system in the single-species chemostat model without the knowledge of the growth function. We then show how one can use this control law to trace out (reconstruct) the whole graph of the growth function. The process of tracing out the graph can be performed either continuously or step-wise. We present and compare both approaches. Even in the case of two species in competition, which is not directly accessible with our approach due to lack of controllability, feedback control improves identifiability of the non-dominant growth rate.Comment: expansion of ideas from proceedings paper (17 pages, 8 figures), proceedings paper is version v

    Conjugation-Length Dependence of Spin-Dependent Exciton Formation Rates in Pi-Conjugated Oligomers and Polymers

    Full text link
    We have measured the ratio, r = σS/σT\sigma_S/\sigma_T of the formation cross section, σ\sigma of singlet (σS\sigma_S) and triplet (σT\sigma_T) excitons from oppositely charged polarons in a large variety of π\pi-conjugated oligomer and polymer films, using the photoinduced absorption and optically detected magnetic resonance spectroscopies. The ratio r is directly related to the singlet exciton yield, which in turn determines the maximum electroluminescence quantum efficiency in organic light emitting diodes (OLED). We discovered that r increases with the conjugation length, CL; in fact a universal dependence exists in which r1r^{-1} depends linearly on CL1CL^{-1}, irrespective of the chain backbone structure. These results indicate that π\pi-conjugated polymers have a clear advantage over small molecules in OLED applications.Comment: 5 pages, 4 figure

    Closed-loop acoustic stimulation during sedation with dexmedetomidine (CLASS-D): Protocol for a within-subject, crossover, controlled, interventional trial with healthy volunteers

    Get PDF
    Introduction: The relative power of slow-delta oscillations in the electroencephalogram (EEG), termed slow-wave activity (SWA), correlates with level of unconsciousness. Acoustic enhancement of SWA has been reported for sleep states, but it remains unknown if pharmacologically induced SWA can be enhanced using sound. Dexmedetomidine is a sedative whose EEG oscillations resemble those of natural sleep. This pilot study was designed to investigate whether SWA can be enhanced using closed-loop acoustic stimulation during sedation (CLASS) with dexmedetomidine. Methods: Closed-Loop Acoustic Stimulation during Sedation with Dexmedetomidine (CLASS-D) is a within-subject, crossover, controlled, interventional trial with healthy volunteers. Each participant will be sedated with a dexmedetomidine target-controlled infusion (TCI). Participants will undergo three CLASS conditions in a multiple crossover design: in-phase (phase-locked to slow-wave upslopes), anti-phase (phase-locked to slow-wave downslopes) and sham (silence). High-density EEG recordings will assess the effects of CLASS across the scalp. A volitional behavioral task and sequential thermal arousals will assess the anesthetic effects of CLASS. Ambulatory sleep studies will be performed on nights immediately preceding and following the sedation session. EEG effects of CLASS will be assessed using linear mixed-effects models. The impacts of CLASS on behavior and arousal thresholds will be assessed using logistic regression modeling. Parametric modeling will determine differences in sleepiness and measures of sleep homeostasis before and after sedation. Results: The primary outcome of this pilot study is the effect of CLASS on EEG slow waves. Secondary outcomes include the effects of CLASS on the following: performance of a volitional task, arousal thresholds, and subsequent sleep. Discussion: This investigation will elucidate 1) the potential of exogenous sensory stimulation to potentiate SWA during sedation; 2) the physiologic significance of this intervention; and 3) the connection between EEG slow-waves observed during sleep and sedation

    Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    Get PDF
    Aims/hypothesis The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. Materials and methods NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Results Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. Conclusions/interpreation The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity

    Cell-free (RNA) and cell-associated (DNA) HIV-1 and postnatal transmission through breastfeeding

    Get PDF
    &lt;p&gt;Introduction - Transmission through breastfeeding remains important for mother-to-child transmission (MTCT) in resource-limited settings. We quantify the relationship between cell-free (RNA) and cell-associated (DNA) shedding of HIV-1 virus in breastmilk and the risk of postnatal HIV-1 transmission in the first 6 months postpartum.&lt;/p&gt; &lt;p&gt;Materials and Methods - Thirty-six HIV-positive mothers who transmitted HIV-1 by breastfeeding were matched to 36 non-transmitting HIV-1 infected mothers in a case-control study nested in a cohort of HIV-infected women. RNA and DNA were quantified in the same breastmilk sample taken at 6 weeks and 6 months. Cox regression analysis assessed the association between cell-free and cell-associated virus levels and risk of postnatal HIV-1 transmission.&lt;/p&gt; &lt;p&gt;Results - There were higher median levels of cell-free than cell-associated HIV-1 virus (per ml) in breastmilk at 6 weeks and 6 months. Multivariably, adjusting for antenatal CD4 count and maternal plasma viral load, at 6 weeks, each 10-fold increase in cell-free or cell-associated levels (per ml) was significantly associated with HIV-1 transmission but stronger for cell-associated than cell-free levels [2.47 (95% CI 1.33–4.59) vs. aHR 1.52 (95% CI, 1.17–1.96), respectively]. At 6 months, cell-free and cell-associated levels (per ml) in breastmilk remained significantly associated with HIV-1 transmission but was stronger for cell-free than cell-associated levels [aHR 2.53 (95% CI 1.64–3.92) vs. 1.73 (95% CI 0.94–3.19), respectively].&lt;/p&gt; &lt;p&gt;Conclusions - The findings suggest that cell-associated virus level (per ml) is more important for early postpartum HIV-1 transmission (at 6 weeks) than cell-free virus. As cell-associated virus levels have been consistently detected in breastmilk despite antiretroviral therapy, this highlights a potential challenge for resource-limited settings to achieve the UNAIDS goal for 2015 of eliminating vertical transmission. More studies would further knowledge on mechanisms of HIV-1 transmission and help develop more effective drugs during lactation.&lt;/p&gt
    corecore