272 research outputs found

    Numerical simulations of ice accretion on wind turbine blades: are performance losses due to ice shape or surface roughness?

    Get PDF
    Ice accretion on wind turbine blades causes both a change in the shape of its sections and an increase in surface roughness. These lead to degraded aerodynamic performances and lower power output. Here, a high-fidelity multi-step method is presented and applied to simulate a 3 h rime icing event on the National Renewable Energy Laboratory 5 MW wind turbine blade. Five sections belonging to the outer half of the blade were considered. Independent time steps were applied to each blade section to obtain detailed ice shapes. The roughness effect on airfoil performance was included in computational fluid dynamics simulations using an equivalent sand-grain approach. The aerodynamic coefficients of the iced sections were computed considering two different roughness heights and extensions along the blade surface. The power curve before and after the icing event was computed according to the Design Load Case 1.1 of the International Electrotechnical Commission. In the icing event under analysis, the decrease in power output strongly depended on wind speed and, in fact, tip speed ratio. Regarding the different roughness heights and extensions along the blade, power losses were qualitatively similar but significantly different in magnitude despite the well-developed ice shapes. It was found that extended roughness regions in the chordwise direction of the blade can become as detrimental as the ice shape itself

    Admissibility Region for Rarefaction Shock Waves in Dense Gases

    Get PDF
    In the vapour phase and close to the liquid–vapour saturation curve, fluids made of complex molecules are expected to exhibit a thermodynamic region in which the fundamental derivative of gasdynamic G is negative. In this region, non-classical gasdynamic phenomena such as rarefaction shock waves are physically admissible, namely they obey the second law of thermodynamics and fulfil the speed-orienting condition for mechanical stability. Previous studies have demonstrated that the thermodynamic states for which rarefaction shock waves are admissible are however not limited to the G <0 region. In this paper, the conditions for admissibility of rarefaction shocks are investigated. This results in the definition of a new thermodynamic region – the rarefaction shocks region – which embeds the G <0 region. The rarefaction shocks region is bounded by the saturation curve and by the locus of the states connecting double-sonic rarefaction shocks, i.e. shock waves in which both the pre-shock and post-shock states are sonic. Only one double-sonic shock is shown to be admissible along a given isentrope, therefore the double-sonic states can be connected by a single curve in the volume–pressure plane. This curve is named the double sonic locus. The influence of molecular complexity on the shape and size of the rarefaction shocks region is also illustrated by using the van der Waals model; these results are confirmed by very accurate multi-parameter thermodynamic models applied to siloxane fluids and are therefore of practical importance in experiments aimed at proving the existence of rarefaction shock waves in the single-phase vapour region as well as in future industrial applications operating in the non-classical regime

    Thermal stability of linear siloxanes and their mixtures

    Get PDF
    The working fluid thermal stability is one of the crucial features of an effective organic Rankine cycle. Hexamethyldisiloxane (MM -C6H18OSi2) and octamethyltrisiloxane (MDM -C8H24O2Si3) are siloxane fluids currently exploited in high temperature organic Rankine cycles. However, data about their thermal stability are scarce or absent in literature. This manuscript presents a study of their behavior and decomposition at operating temperatures in the range 270 - 420 degrees C. The assessment of thermal stability can be performed with several methods, which are either based on pressure anomalous variation in isothermal stresses or on the deviation of the saturation curves experimentally obtained before and after the fluid is thermally stressed. An enhanced method is proposed here, based on chemical analysis of both vapor and liquid phases of the sample before and after it is subjected to thermal stress. A comparison of the pre-and post-stress vapor-liquid equilibrium curve complements the analysis. Results proved a higher stability for MM than for MDM. Moreover, due to the current interest in applying mixtures in organic Rankine cycles, an equimolar mixture of MM and MDM was also tested, which exhibit a behavior that appears to be different from the simple superimposition of pure fluid ones
    • …
    corecore