156 research outputs found

    Low mass star formation and subclustering in the HII regions RCW 32, 33 and 27 of the Vela Molecular Ridge. A photometric diagnostics to identify M-type stars

    Get PDF
    Most stars born in clusters and recent results suggest that star formation (SF) preferentially occurs in subclusters. Studying the morphology and SF history of young clusters is crucial to understanding early SF. We identify the embedded clusters of young stellar objects (YSOs) down to M stars, in the HII regions RCW33, RCW32 and RCW27 of the Vela Molecular Ridge. Our aim is to characterise their properties, such as morphology and extent of the clusters in the three HII regions, derive stellar ages and the connection of the SF history with the environment. Through public photometric surveys such as Gaia, VPHAS, 2MASS and Spitzer/GLIMPSE, we identify YSOs with IR, Halpha and UV excesses, as signature of circumstellar disks and accretion. In addition, we implement a method to distinguish M dwarfs and giants, by comparing the reddening derived in several optical/IR color-color diagrams, assuming suitable theoretical models. Since this diagnostic is sensitive to stellar gravity, the procedure allows us to identify pre-main sequence stars. We find a large population of YSOs showing signatures of circumstellar disks with or without accretion. In addition, with the new technique of M-type star selection, we find a rich population of young M stars with a spatial distribution strongly correlated to the more massive population. We find evidence of three young clusters, with different morphology. In addition, we identify field stars falling in the same region, by securely classifying them as giants and foreground MS stars. We identify the embedded population of YSOs, down to about 0.1 Msun, associated with the HII regions RCW33, RCW32 and RCW27 and the clusters Vela T2, Cr197 and Vela T1, respectively, showing very different morphologies. Our results suggest a decreasing SF rate in Vela T2 and triggered SF in Cr197 and Vela T1.Comment: Accepted for publication in A&A; 20 pages, 22 figures, 6 table

    Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    Get PDF
    NGC6611 and its parental cloud, the Eagle Nebula (M16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. We identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 micron. In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. We confirm the membership of these stars to M16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T-Tauri stars with disks and envelopes. We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of ClassII stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light.Comment: Accepted for publication in A&

    A multi-wavelength view of magnetic flaring from PMS stars

    Get PDF
    Flares from the Sun and other stars are most prominently observed in the soft X-ray band. Most of the radiated energy, however, is released at optical/UV wavelengths. In spite of decades of investigation, the physics of flares is not fully understood. Even less is known about the powerful flares routinely observed from pre-main sequence stars, which might significantly influence the evolution of circumstellar disks. Observations of the NGC2264 star forming region were obtained in Dec. 2011, simultaneously with three telescopes, Chandra (X-rays), CoRoT (optical), and Spitzer (mIR), as part of the "Coordinated Synoptic Investigation of NGC2264" (CSI-NGC2264). Shorter Chandra and CoRoT observations were also obtained in March 2008. We analyzed the lightcurves to detect X-ray flares with an optical and/or mIR counterpart. Basic flare properties from the three datasets, such as emitted energies and peak luminosities, were then compared to constrain the spectral energy distribution of the flaring emission and the physical conditions of the emitting regions. Flares from stars with and without circumstellar disks were also compared to establish any difference that might be attributed to the presence of disks. Seventy-eight X-ray flares with an optical and/or mIR counterpart were detected. Their optical emission is found to correlate well with, and to be significantly larger than, the X-ray emission. The slopes of the correlations suggest that the difference becomes smaller for the most powerful flares. The mIR flare emission seems to be strongly affected by the presence of a circumstellar disk: flares from stars with disks have a stronger mIR emission with respect to stars without disks. This might be attributed to the reprocessing of the optical (and X-ray) flare emission by the inner circumstellar disk, providing evidence for flare-induced disk heating.Comment: 16 pages (36 including appendixes), 8 figures (main text), accepted for publication by Astronomy & Astrophysics (section 8

    Near-Infrared Time-Series Photometry in the Field of Cygnus OB2 Association I - Rotational Scenario For Candidate Members

    Get PDF
    In the last decades, the early pre main sequence stellar rotational evolution picture has been constrained by studies targeting different young regions at a variety of ages. Observational studies suggest a mass-rotation dependence, and for some mass ranges a connection between rotation and the presence of a circumstellar disk. Not still fully explored, though, is the role of environmental conditions on the rotational regulation. We investigate the rotational properties of candidate members of the young massive association Cygnus OB2. The Stetson variability index, Lomb-Scargle periodogram, Saunders statistics, string/rope length method, and visual verification of folded light curves were applied to select 1224 periodic variable stars. Completeness and contamination of the periodic sample was derived from Monte Carlo simulations, out of which 894 periods were considered reliable. Our study was considered reasonably complete for periods from 2 to 30 days. The general rotational scenario seen in other young regions is confirmed by Cygnus OB2 period distributions, with disked stars rotating on average slower than non-disked stars. A mass-rotation dependence was also verified, but as in NGC 6530, lower mass stars are rotating on average slower than higher mass stars, with an excess of slow rotators among the lower mass population. The effect of the environment on the rotational properties of the association was investigated by re-analysing the results while taking into account the incident UV radiation arising from O stars in the association. Results compatible with the disk-locking scenario were verified for stars with low UV incidence, but no statistical significant relation between rotation and disk presence was verified for stars with high UV incidence suggesting that massive stars can have an important role on regulating the rotation of nearby low mass stars.Comment: Submitted on December 23, 201

    CSI 2264: Simultaneous optical and X-ray variability in pre-Main Sequence stars. I: Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    Get PDF
    Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264. In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results. We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9/24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe on average a larger soft X-ray spectral component not observed in non accreting stars.Comment: Accepted for publication by Astronomy & Astrophysic

    Chronology of star formation and disk evolution in the Eagle Nebula

    Full text link
    Massive SFR are characterized by intense ionizing fluxes, strong stellar winds and supernovae explosions, all of which have important effects on the surrounding media, on the star-formation (SF) process and on the evolution of YSOs and their disks. We present a multiband study of the massive young cluster NGC6611 and M16, to study how OB stars affect the early stellar evolution and the SF. We search for evidence of triggered SF by OB stars in NGC6611 on a large spatial scale (~10 pc) and how the efficiency of disks photoevaporation depends on the central stars mass. We assemble a multiband catalog with photometric data, from B band to 8.0micron, and X-ray data obtained with 2 new and 1 archival ACIS-I observation. We select the stars with disks from IR photometry and disk-less from X-ray emission, both in NGC6611 and the outer region of M16. We study induced photoevaporation searching for the spatial variation of disk frequency for distinct stellar mass ranges. The triggering of SF by OB stars has been investigated by deriving the history of SF across the nebula. We find evidence of sequential SF in the Eagle Nebula going from the SE (2.6 Myrs) to the NW (0.3 Myrs), with the median age of ~1 Myear. We observe a drop of the disk frequency close to OB stars (up to an average distance of 1 pc), without effects at larger distances. Furthermore, disks are more frequent around low-mass stars (<1 M(solar)) than in high-mass stars, regardless of the distance from OB stars. The SF chronology in M16 does not support the hypothesis of a large-scale SF triggered by OB stars in NGC6611. Instead, we speculate that it was triggered by the encounter (~3 Myrs ago) with a giant molecular shell created ~6 Myrs ago.Comment: Accepted for publication at Astronomy and Astrophysic

    Correlation between the spatial distribution of circumstellar disks and massive stars in the young open cluster NGC 6611. II: Cluster members selected with Spitzer/IRAC

    Full text link
    Context: the observations of the proplyds in the Orion Nebula Cluster, showing clear evidence of ongoing photoevaporation, have provided a clear proof about the role of the externally induced photoevaporation in the evolution of circumstellar disks. NGC 6611 is an open cluster suitable to study disk photoevaporation, thanks to its large population of massive members and of stars with disk. In a previous work, we obtained evidence of the influence of the strong UV field generated by the massive cluster members on the evolution of disks around low-mass Pre-Main Sequence members. That work was based on a multi-band BVIJHK and X-ray catalog purposely compiled to select the cluster members with and without disk. Aims: in this paper we complete the list of candidate cluster members, using data at longer wavelengths obtained with Spitzer/IRAC, and we revisit the issue of the effects of UV radiation on the evolution of disks in NGC 6611. Methods: we select the candidate members with disks of NGC 6611, in a field of view of 33'x34' centered on the cluster, using IRAC color-color diagrams and suitable reddening-free color indices. Besides, using the X-ray data to select Class III cluster members, we estimate the disks frequency vs. the intensity of the incident radiation emitted by massive members. Results: we identify 458 candidate members with circumstellar disks, among which 146 had not been revealed in our previous work. Comparing of the various color indices we used to select the cluster members with disk, we claim that they detect the excesses due to the emission of the same physical region of the disk: the inner rim at the dust sublimation radius. Our new results confirm that UV radiation from massive stars affects the evolution of nearby circumstellar disks.Comment: Accepted for publication at Astronomy & Astrophysic
    • …
    corecore