5 research outputs found

    Heimler Syndrome is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6

    Get PDF
    Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities and occasional or late onset retinal pigmentation. We ascertained eight families with HS, and - using a whole exome sequencing approach - identified biallelic mutations in PEX1 or PEX6 in six of them. Loss of function mutations in both genes are known causes of a spectrum of autosomal recessive peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the overlap is minimal and the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define Heimler syndrome as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6

    Homozygous nonsense mutation of WNT10B gene in a Moroccan family with split-hand foot malformation identified by exome sequencing: a case report

    Get PDF
    Split-hand foot malformation (SHFM) is a clinically heterogeneous congenital limb defect affecting predominantly the central rays of hands and/or feet. The clinical expression varies in severity between patients as well between the limbs in the same individual. SHFM might be non-syndromic with limb-confined manifestations or syndromic with extra-limb manifestations. Isolated SHFM is a rare condition with an incidence of about 1 per 18,000 live born infants and accounts for 8-17% of all limb malformations. To date, many chromosomal loci and genes have been described as associated with isolated SHFM, i.e., SHFM1 to 6. SHFM6 is one of the rarest forms of SHFM, and is caused by mutations in WNT10B gene. Less than ten pathogenic variants have been described. We have investigated a large consanguineous Moroccan family with three affected members showing feet malformations with or without split hand malformation phenotypes. Using an exome sequencing approach, we identified a homozygous nonsense variant p.Arg115* of WNT10B gene retaining thereby the diagnosis of SHFM6. This homozygous nonsense mutation identified by exome sequencing in a large family of split hand foot malformation highlights the importance of exome sequencing in genetically heterogeneous entities
    corecore