145 research outputs found
Automatic Side-Scan Sonar Image Enhancement in Curvelet Transform Domain
We propose a novel automatic side-scan sonar image enhancement algorithm based on curvelet transform. The proposed algorithm uses the curvelet transform to construct a multichannel enhancement structure based on human visual system (HVS) and adopts a new adaptive nonlinear mapping scheme to modify the curvelet transform coefficients in each channel independently and automatically. Firstly, the noisy and low-contrast sonar image is decomposed into a low frequency channel and a series of high frequency channels by using curvelet transform. Secondly, a new nonlinear mapping scheme, which coincides with the logarithmic nonlinear enhancement characteristic of the HVS perception, is designed without any parameter tuning to adjust the curvelet transform coefficients in each channel. Finally, the enhanced image can be reconstructed with the modified coefficients via inverse curvelet transform. The enhancement is achieved by amplifying subtle features, improving contrast, and eliminating noise simultaneously. Experiment results show that the proposed algorithm produces better enhanced results than state-of-the-art algorithms
Factors affecting sustainability of smart city services in China:From the perspective of citizens’ sense of gain
The citizen-centric smart city has become an essential paradigm for dealing with the problems caused by rapid urbanization. The Chinese government proposed enhancing citizens' sense of gain to achieve the citizen-centric development goal. To develop a more realistic improving path for the sustainability of smart city services (SCS), it is necessary to clarify the factors that affect citizens' sense of gain of smart city services (CSGSCS). To achieve this objective, 9 hypotheses were developed based on the modified expectation confirmation theory. Hypothesis testing, mediating effect testing, and heterogeneity analysis was conducted based on data collected from Nanjing citizens. The results indicate that: 1) Expectation-Perception Performance, including Content of SCS, Channel of SCS, and Support of SCS, all have positive direct effects on CSGSCS; 2) Expectation Confirmation directly affects CSGSCS and mediates the positive effect of the Expectation-Perception Performance on CSGSCS; 3) Heterogeneity of age and usage frequency have significant effects on CSGSCS. Finally, three policy implications were proposed, including encouraging citizens to participate in SCS supply, bridging the digital divide created by SCS, and improving the policy and legal system on SCS. This research enriches the academic framework and provides guidance for sustainable supply of SCS in similar cities around the world.</p
Factors affecting sustainability of smart city services in China:From the perspective of citizens’ sense of gain
The citizen-centric smart city has become an essential paradigm for dealing with the problems caused by rapid urbanization. The Chinese government proposed enhancing citizens' sense of gain to achieve the citizen-centric development goal. To develop a more realistic improving path for the sustainability of smart city services (SCS), it is necessary to clarify the factors that affect citizens' sense of gain of smart city services (CSGSCS). To achieve this objective, 9 hypotheses were developed based on the modified expectation confirmation theory. Hypothesis testing, mediating effect testing, and heterogeneity analysis was conducted based on data collected from Nanjing citizens. The results indicate that: 1) Expectation-Perception Performance, including Content of SCS, Channel of SCS, and Support of SCS, all have positive direct effects on CSGSCS; 2) Expectation Confirmation directly affects CSGSCS and mediates the positive effect of the Expectation-Perception Performance on CSGSCS; 3) Heterogeneity of age and usage frequency have significant effects on CSGSCS. Finally, three policy implications were proposed, including encouraging citizens to participate in SCS supply, bridging the digital divide created by SCS, and improving the policy and legal system on SCS. This research enriches the academic framework and provides guidance for sustainable supply of SCS in similar cities around the world.</p
Enzyme-mediated dual-targeted-assembly realizes a synergistic anticancer effect
We designed and synthesized homochiral-peptide-based boron diketonate complexes. Co-administration of the two stereoisomers in cancer cells led to molecular assembly targeting both the plasma membrane and the lysosomes mediated via membrane-bonded enzymes. The dual-targeted-assembly generates a synergistic anticancer effect with amplified cancer spheroid toxicity and enhanced inhibition efficacy on cancer cell migration
Towards meeting the IATA-agreed 1.5% average annual fuel efficiency improvements between 2010 and 2020: the current progress being made by U.S. air carriers
The purpose of this paper is to see if airlines in general, and U.S. air-carriers in particular, are meeting their IATA-agreed 1.5% average annual fuel efficiency improvements between 2010 and 2020. To assess the fuel efficiency performance, a quantitative analysis was performed using data provided by ICAO, IATA and the U.S. Bureau of Transportation Statistics (BTS) Form 41 Schedules P 12(a) and T-2. The metric used to assess fuel efficiency is the one advanced by ICAO, namely Litres per Revenue Tonne Kilometre performed. Trends are examined over an extended timeframe to establish annual fuel efficiency improvements. The findings show that the overall performance of U.S. air-carriers from 2010 to 2018 has just met IATA’s 1.5% target with a 1.52% year-upon-year annual fuel efficiency improvement, with domestic operations showing a greater level of improvement than international operations. Such performance suggests that the U.S.A, and by inference, the rest of the world, are just likely to meet their IATA target by 2020. This achievement has largely been made possible through industry’s tremendous efforts to enhance aircraft engine technologies, implement operational improvements, and reduce airframe weight through the extensive application of composite materials.
First published online 27 February 202
Road Vehicle Monitoring System Based on Intelligent Visual Internet of Things
In recent years, with the rapid development of video surveillance infrastructure, more and more intelligent surveillance systems have employed computer vision and pattern recognition techniques. In this paper, we present a novel intelligent surveillance system used for the management of road vehicles based on Intelligent Visual Internet of Things (IVIoT). The system has the ability to extract the vehicle visual tags on the urban roads; in other words, it can label any vehicle by means of computer vision and therefore can easily recognize vehicles with visual tags. The nodes designed in the system can be installed not only on the urban roads for providing basic information but also on the mobile sensing vehicles for providing mobility support and improving sensing coverage. Visual tags mentioned in this paper consist of license plate number, vehicle color, and vehicle type and have several additional properties, such as passing spot and passing moment. Moreover, we present a fast and efficient image haze removal method to deal with haze weather condition. The experiment results show that the designed road vehicle monitoring system achieves an average real-time tracking accuracy of 85.80% under different conditions
Chemical Oscillation and Morphological Oscillation in Catalyst-Embedded Lyotropic Liquid Crystalline Gels
Liquid crystalline gels offer promising means in generating smart materials due to programmable mechanics and reversible shape changes in response to external stimuli. We demonstrate a simple and convenient method of constructing catalyst-embedded lyotropic liquid crystalline (LLC) gels and achieve chemomechanical oscillator by converting chemical waves in Belousov-Zhabotinsky (BZ) reaction. We observe the directed chemical oscillations on LLC sticks accompanied by small-scale oscillatory swellings-shrinkages that are synchronized with the chemical waves of an LLC stick. To amplify the mechanical oscillations, we further fabricate small LLC fibers and achieve macroscopically oscillatory bending-unbending transition of the LLC fiber driven by a BZ reaction
Self-Assembly-Directed Cancer Cell Membrane Insertion of Synthetic Analogues for Permeability Alteration
Inspired by the metamorphosis of pore-forming toxins from soluble inactive monomers to cytolytic trans-membrane assemblies, we developed self-assembly-directed membrane insertion of synthetic analogues for permeability alteration. An expanded pi-conjugation-based molecular precursor with an extremely high rigidity and a long hydrophobic length that is comparable to the hydrophobic width of plasma membrane was synthesized for membrane-inserted self-assembly. Guided by the cancer biomarker expression in vitro, the soluble precursors transform into hydrophobic monomers forming assemblies inserted into the fluid phase of the membrane exclusively. Membrane insertion of rigid synthetic analogues destroys the selective permeability of the plasma membrane gradually. It eventually leads to cancer cell death, including drug resistant cancer cells
- …