25 research outputs found

    A Study on the Durability of Flexible Pavement Materials: Asphalt Absorption and Oxidation Kinetics

    Get PDF
    Asphalt pavement is the major pavement type worldwide. Today, over 90% highways are paved with asphalt concrete. Like other pavement types, asphalt pavement suffers from certain types of damage, which call for maintenance. Billions of dollars are spent on the maintenance of asphalt pavement each year. To reduce the maintenance cost, satisfactory pavement design that addresses the mechanical and chemical properties of asphalt pavement, is necessary. In pavement design, two of the factors affecting pavement durability are the absorption of asphalt into porous aggregates and the hardening of asphalt due to oxidation. Asphalt absorption reduces the effective binder content in the pavement. Meanwhile, the oxidative hardening of asphalt will eventually lead to pavement fatigue cracking. This work focused on the properties of flexible pavement materials, especially asphalt absorption process and oxidation kinetics. The objectives were to evaluate and improve the current method of absorption measurement, and to study the oxidation kinetics of warm mix asphalt (a new pavement technology widely used). To achieve these objectives, studies were designed and conducted. Asphalt absorption in porous materials was systematically studied. A new method for asphalt absorption measurement, using a density gradient column, was developed to measure asphalt absorption in single aggregate particles at a higher precision level. Experimental results showed that asphalt absorption correlated very well with the void volume in asphalt, regardless of the aggregate type. Moreover, the effect of contact time on asphalt absorption was studied. Finally, the asphalt absorption of warm mix materials from loose mix samples was measured using a density gradient column. Additionally, the oxidation kinetics of warm mix asphalt was investigated. Oxidation kinetics parameters were estimated and used in a pavement aging simulation. Insignificant differences between the warm mix asphalts and the base binder control were found. These oxidation kinetics results provided a better understanding of the pavement performance of warm mix asphalt

    Preparation and Characterization of a Lecithin Nanoemulsion as a Topical Delivery System

    Get PDF
    Purpose of this study was to establish a lecithin nanoemulsion (LNE) without any synthetic surfactant as a topical delivery vehicle and to evaluate its topical delivery potential by the following factors: particle size, morphology, viscosity, stability, skin hydration and skin penetration. Experimental results demonstrated that an increasing concentration of soybean lecithin and glycerol resulted in a smaller size LNE droplet and increasing viscosity, respectively. The droplet size of optimized LNE, with the glycerol concentration above 75% (w/w), changed from 92 (F10) to 58 nm (F14). Additionally, LNE, incorporated into o/w cream, improved the skin hydration capacity of the cream significantly with about 2.5-fold increase when the concentration of LNE reached 10%. LNE was also demonstrated to improve the penetrability of Nile red (NR) dye into the dermis layer, when an o/w cream, incorporated with NR-loaded LNE, applied on the abdominal skin of rat in vivo. Specifically, the arbitrary unit (ABU) of fluorescence in the dermis layer that had received the cream with a NR-loaded LNE was about 9.9-fold higher than the cream with a NR-loaded general emulsion (GE). These observations suggest that LNE could be used as a promising topical delivery vehicle for lipophilic compounds

    Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules

    Get PDF
    The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs). The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride); however, the zeta potential of CoQ10-LNCs was above /− 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC) in one heating–cooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM). The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Assessing port congestion using ship movement data: a case study of Tianjin port

    No full text
    In this paper, a full year (2012) of pilot and traffic data is used to perform an analysis of the vessel traffic movements for Tianjin port. The results will include the berth-to-berth vessel movements, occupancy time of berths as well as the utilisation rate of terminals. This study has identified that berth utilisation in Tianjin port is inconsistent, ranging from 1% occupancy to 88% occupancy over the year. These results will be used to inform further research on policy and planning alternatives to reduce emission burdens and optimise port operations, therefore to improve the efficiency and safety of port operation.</p

    netboxr: Automated discovery of biological process modules by network analysis in R.

    No full text
    SummaryLarge-scale sequencing projects, such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), have generated high throughput sequencing and molecular profiling data sets, but it is still challenging to identify potentially causal changes in cellular processes in cancer as well as in other diseases in an automated fashion. We developed the netboxr package written in the R programming language, which makes use of the NetBox algorithm to identify candidate cancer-related functional modules. The algorithm makes use of a data-driven, network-based approach that combines prior knowledge with a network clustering algorithm, obviating the need for and the limitation of independently curated functionally labeled gene sets. The method can combine multiple data types, such as mutations and copy number alterations, leading to more reliable identification of functional modules. We make the tool available in the Bioconductor R ecosystem for applications in cancer research and cell biology.Availability and implementationThe netboxr package is free and open-sourced under the GNU GPL-3 license R package available at https://www.bioconductor.org/packages/release/bioc/html/netboxr.html

    Trace quantification of GL-V9 and its glucuronide metabolites (5-O-glucuronide GL-V9) in Beagle dog plasma by UPLC-MS/MS and its application to a pharmacokinetic study.

    No full text
    GL-V9, a new synthetic flavonoid derived from wogonin, has shown beneficial biological functions. In this study, accurate and sensitive UPLC-MS/MS methods were developed and validated for the quantification of GL-V9 and its glucuronide metabolite (5-O-glucuronide GL-V9) in Beagle dog plasma. The chromatographic separation was performed on a C8 column (ACE Excel 5 C8 50×3.0 mm) using 0.1% formic acid and acetonitrile were used as mobile phase. Mass detection was performed on a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization (ESI) interface operating in positive ion mode. Quantitative analysis was performed in multiple reaction monitoring (MRM) mode with the transitions of m/z 410.2→126.1 for GL-V9, m/z 586.3→410.0 for 5-O-glucuronide GL-V9 and m/z 180.0→110.3 for phenacetin (internal standard), respectively. The calibration curves for GL-V9 and 5-O-glucuronide GL-V9 showed excellent linearity over the concentration range of 0.5-500 ng/mL with correlation coefficient greater than 0.99. The intra- and inter-day accuracies were within 99.86% to 109.20% for GL-V9 and 92.55% to 106.20% for 5-O-glucuronide GL-V9, respectively. The mean recovery was 88.64% ± 2.70% for GL-V9, and 92.31% ± 6.28% for 5-O-glucuronide GL-V9, respectively. The validated method was successfully applied to the pharmacokinetic study in Beagle dogs after oral and intravenous administration. The oral bioavailability of GL-V9 was approximately 2.47%~4.35% in Beagle dogs and reached steady state on the fifth day after repeated dosing

    Digitalization for Port Decarbonization: Decarbonization of key energy processes at the Port of Tyne

    No full text
    This article presents findings of the Clean Tyne Project. This project was part of the Clean Maritime Demonstration, funded by the UK’s Department for Transport and delivered in partnership with Innovate UK. Announced in March 2020, and part of the Prime Minister’s Ten Point Plan to position the UK at the forefront of green shipbuilding and maritime technology, the Clean Maritime Demonstration Competition was a £20m investment from government alongside a further £10m from industry to reduce emissions from the maritime sector. The contribution of Newcastle University in the project was to provide quantifiable evidence around the benefits of digitalization, by means of a real-time supervisory and data acquisition platform, in the reduction of carbon emissions, as well as operating and infrastructural costs, at the Port of Tyne.The main aim of this article is to report and discuss the key outputs originating from the modelling performed by Newcastle University around specific operational scenarios at the port. These are intended to highlight the value of intelligent coordination of key energy processes and reduced uncertainty of associated data, both enabled by digitalization. For this purpose, we have designed and modelled current and future operational scenarios, in which Emission Reduction Technologies (ERTs)1 and infrastructure are introduced, alongside increased capability for coordination of energy assets and data availability. In our analysis we consider a centralized decision-making process where energy costs and carbon emissions are minimized subject to available infrastructure and data.Our results can be divided into three categories: impact of emission reduction technologies, impact of coordination, and impact of uncertainty on investment deferral. Under certain credible modelling and data assumptions, and considering energy operational costs and emissions, our findings are that: ERTs can yield significant emissions reductions of up to 93% in year 2040 compared to a present scenario, even if imported power is not 100% zero-carbon; energy costs related with key operations can be reduced up to 45% in year 2050 compared to a scenario where assets are not coordinated; and finally, confidence in data can yield significant reductions in infrastructural investment costs for key energy assets such as energy storage; we have noted that reduction of uncertainty through data availability (due to digitalization) led to a £3.35 Mreduction of CapEx for a particular case considering energy storage installed at the Port of Tyne. We now continue by showing how we modelled port operational scenarios. We then perform a quantitative analysis of cost and carbon emission savings that can be achieved by intelligent coordination of key processes, as well as savings in the form of deferral of network reinforcement and investment in new assets and technologies due to reduced uncertainty around historical data. We subsequently present our results, key findings, and conclude this article, including some suggestions for future work

    Overcoming Anxiety Disorder by Probiotic <i>Lactiplantibacillus plantarum LZU-J-TSL6</i> through Regulating Intestinal Homeostasis

    No full text
    Lactiplantibacillus plantarum LZU-J-TSL6 with high γ-aminobutyric acid (GABA) production (3.838 g/L) was screened and isolated from the Chinese fermented food snack “Jiangshui”. The improvement effect on anxiety disorder was explored using mice as animal models. In vitro results revealed that LZU-J-TSL6 had the potential to colonize the intestine (p LZU-J-TSL6 was significantly improved (p LZU-J-TSL6 was able to effectively increase the GABA content in the mice hippocampus (p LZU-J-TSL6 increased the relative abundance of beneficial bacteria Bacteroides and Muribaculum, thereby regulating the imbalance of intestinal microbiota caused by anxiety disorder. It also affects the nerve pathway and intestinal mucosal barrier by increasing the content of glutamine and γ-aminobutyric acid and other related metabolites, thereby improving anxiety. Therefore, the GABA-producing Lactobacillus plantus LZU-J-TSL6 can be used as a probiotic to exert an indirect or direct anti-anxiety effect by maintaining the balance of the intestinal environment, producing related metabolites that affect nerve pathways and repair the intestinal mucosal barrier. It can be used as an adjuvant treatment to improve anxiety disorders

    Transport of Amino Acids in Soy Sauce Desalination Process by Electrodialysis

    No full text
    Soy sauce is a common condiment that has a unique flavor, one that is derived from its rich amino acids and salts. It is known that excessive intake of high-sodium food will affect human health, causing a series of diseases such as hypertension and kidney disease. Therefore, removing sodium from the soy sauce and retaining the amino acids is desirable. In this study, electrodialysis (ED) was employed for the desalination of soy sauce using commercial ion exchange membranes (IEMs). The influence of the current density and initial pH on the desalination degree of the soy sauce was explored. Results showed that the optimal desalination condition for ED was reached at a current density of 5 mA/cm2 and pH of 5, with the desalination degree of 64% and the amino acid loss rate of 29.8%. Moreover, it was found that the loss rate of amino acids was related to the initial concentration and molecular structure. In addition, the amino acid adsorption by IEMs was explored. Results implied that the molecular weight and structure affect amino acid adsorption. This study illustrated that the ED process can successfully reduce the salt content of the soy sauce and retain most of the amino acids without compromising the original flavor
    corecore