67 research outputs found

    Diverse Thermal Transport Properties of Two-Dimensional Materials: A Comparative Review

    Get PDF
    The discovery of graphene led to an upsurge in exploring two-dimensional (2D) materials, such as silicene, germanene, phosphorene, hexagonal boron nitride (h-BN), and transition metal dichalcogenides (TMDCs), which have attracted tremendous attention due to their unique dimension-dependent properties in the applications of nanoelectronics, optoelectronics, and thermoelectrics. The phonon transport properties governing the heat energy transfer have become a crucial issue for continuing progress in the electronic industry. This chapter reviews the state-of-the-art theoretical and experimental investigations of phonon transport properties of broad 2D nanostructures in various forms, with graphene, silicene and phosphorene as representatives, all of which consist of single element. Special attention is given to the effect of different physical factors, such as sample size, strain, and layer thickness. The effect of substrate and the phonon transport properties in heterostructures are also discussed. We find that the phonon transport properties of 2D materials largely depend on their atomic structure and interatomic bonding nature, showing a diverse intrinsic phonon behavior and disparate response to external environment

    Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles

    Full text link
    Phosphorene, the single layer counterpart of black phosphorus, is a novel two-dimensional semiconductor with high carrier mobility and a large fundamental direct band gap, which has attracted tremendous interest recently. Its potential applications in nano-electronics and thermoelectrics call for a fundamental study of the phonon transport. Here, we calculate the intrinsic lattice thermal conductivity of phosphorene by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of phosphorene at 300 K300\,\mathrm{K} is 30.15 Wm−1K−130.15\,\mathrm{Wm^{-1}K^{-1}} (zigzag) and 13.65 Wm−1K−113.65\,\mathrm{Wm^{-1}K^{-1}} (armchair), showing an obvious anisotropy along different directions. The calculated thermal conductivity fits perfectly to the inverse relation with temperature when the temperature is higher than Debye temperature (ΘD=278.66 K\Theta_D = 278.66\,\mathrm{K}). In comparison to graphene, the minor contribution around 5%5\% of the ZA mode is responsible for the low thermal conductivity of phosphorene. In addition, the representative mean free path (MFP), a critical size for phonon transport, is also obtained.Comment: 5 pages and 6 figures, Supplemental Material available as http://www.rsc.org/suppdata/cp/c4/c4cp04858j/c4cp04858j1.pd

    Methodology for determining the electronic thermal conductivity of metals via direct non-equilibrium ab initio molecular dynamics

    Get PDF
    Many physical properties of metals can be understood in terms of the free electron model, as proven by the Wiedemann-Franz law. According to this model, electronic thermal conductivity (κel\kappa_{el}) can be inferred from the Boltzmann transport equation (BTE). However, the BTE does not perform well for some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the origin of the thermal energy carried by electrons or how this energy is transported in metals. The charge distribution of conduction electrons in metals is known to reflect the electrostatic potential (EP) of the ion cores. Based on this premise, we develop a new methodology for evaluating κel\kappa_{el} by combining the free electron model and non-equilibrium ab initio molecular dynamics (NEAIMD) simulations. We demonstrate that the kinetic energy of thermally excited electrons originates from the energy of the spatial electrostatic potential oscillation (EPO), which is induced by the thermal motion of ion cores. This method directly predicts the κel\kappa_{el} of pure metals with a high degree of accuracy.Comment: 7 pages, 3 figures, with Supplementary Information of 19 pages, 7 figures and 7 table

    Diverse anisotropy of phonon transport in two-dimensional IV-VI compounds: A comparative study

    Full text link
    New classes two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport property is one of the fundamental physical parameters. In this paper, we systematically investigated the phonon transport properties of 2D orthorhombic group IV-VI compounds of GeSGeS, GeSeGeSe, SnSSnS and SnSeSnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite the similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ\kappa), etc. Especially, the κ\kappa along the zigzag and armchair directions of monolayer GeSGeS shows the strongest anisotropy while monolayer SnSSnS and SnSeSnSe shows an almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in detail. With limited size, the κ\kappa could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications in nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and aplications in emerging technologies.Comment: 14 pages, 8 figures, 2 table

    High hydrostatic pressure harnesses the biosynthesis of secondary metabolites via the regulation of polyketide synthesis genes of hadal sediment-derived fungi

    Get PDF
    Deep-sea fungi have evolved extreme environmental adaptation and possess huge biosynthetic potential of bioactive compounds. However, not much is known about the biosynthesis and regulation of secondary metabolites of deep-sea fungi under extreme environments. Here, we presented the isolation of 15 individual fungal strains from the sediments of the Mariana Trench, which were identified by internal transcribed spacer (ITS) sequence analysis as belonging to 8 different fungal species. High hydrostatic pressure (HHP) assays were performed to identify the piezo-tolerance of the hadal fungi. Among these fungi, Aspergillus sydowii SYX6 was selected as the representative due to the excellent tolerance of HHP and biosynthetic potential of antimicrobial compounds. Vegetative growth and sporulation of A. sydowii SYX6 were affected by HHP. Natural product analysis with different pressure conditions was also performed. Based on bioactivity-guided fractionation, diorcinol was purified and characterized as the bioactive compound, showing significant antimicrobial and antitumor activity. The core functional gene associated with the biosynthetic gene cluster (BGC) of diorcinol was identified in A. sydowii SYX6, named as AspksD. The expression of AspksD was apparently regulated by the HHP treatment, correlated with the regulation of diorcinol production. Based on the effect of the HHP tested here, high pressure affected the fungal development and metabolite production, as well as the expression level of biosynthetic genes which revealed the adaptive relationship between the metabolic pathway and the high-pressure environment at the molecular level
    • …
    corecore