35 research outputs found

    Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system

    Get PDF
    Additional file 2: Table S1. The functional annotations of proteins identified in the proteome of SP. Mass spectrometry-based proteomics study was performed to comprehensively dissect the lignocellulolytic enzyme profile of SP. Accession, Protein name, PSM, Calc. MW, CBM, Calc. pI and CAZy family of identified proteins were shown

    Exploration of the Regulatory Mechanism of Secondary Metabolism by Comparative Transcriptomics in Aspergillus flavus

    Get PDF
    Mycotoxins cause a huge threaten to agriculture, food safety, and human and animal life. Among them, aflatoxins (AFs) have always been considered the most potent carcinogens, and filamentous fungi from Aspergillus genus are their major producers, especially A. flavus. Although the biosynthesis path of these chemicals had been well-identified, the regulatory mechanisms controlling expression of AF gene cluster were poorly understood. In this report, genome-wide transcriptome profiles of A. flavus from AF conducing [yeast sucrose media (YES)] and non-conducing [yeast peptone media (YEP)] conditions were compared by using deep RNA sequencing (RNA-seq), and the results revealed that AF biosynthesis pathway and biosynthesis of amino acids were significantly upregulated in YES vs. YEP. Further, a novel LaeA-like methyltransferase AFLA_121330 (Lael1) was identified for the first time, to play a specific role in the regulation of AF biosynthesis. Contrary to LaeA, which gene deletion reduced the level, lael1 deletion resulted in a significant increase in AF production. Further, co-expression network analysis revealed that mitochondrial pyruvate transport and signal peptide processing were potentially involved in AF synthesis for the first time, as well as biological processes of ribosome, branched-chain amino acid biosynthetic process and translation were co-regulated by AfRafA and AfStuA. To sum up, our analyses could provide novel insights into the molecular mechanism for controlling the AF and other secondary metabolite synthesis, adding novel targets for plant breeding and making fungicides

    The Histone Deacetylase HstD Regulates Fungal Growth, Development and Secondary Metabolite Biosynthesis in <i>Aspergillus terreus</i>

    No full text
    Histone acetylation modification significantly affects secondary metabolism in filamentous fungi. However, how histone acetylation regulates secondary metabolite synthesis in the lovastatin (a lipid-lowering drug) producing Aspergillus terreus remains unknown because protein is involved and has been identified in this species. Here, the fungal-specific histone deacetylase gene, hstD, was characterized through functional genomics in two marine-derived A. terreus strains, Mj106 and RA2905. The results showed that the ablation of HstD resulted in reduced mycelium growth, less conidiation, and decreased lovastatin biosynthesis but significantly increased terrein biosynthesis. However, unlike its homologs in yeast, HstD was not required for fungal responses to DNA damage agents, indicating that HstD likely plays a novel role in the DNA damage repair process in A. terreus. Furthermore, the loss of HstD resulted in a significant upregulation of H3K56 and H3K27 acetylation when compared to the wild type, suggesting that epigenetic functions of HstD, as a deacetylase, target H3K27 and H3K56. Additionally, a set of no-histone targets with potential roles in fungal growth, conidiation, and secondary metabolism were identified for the first time using acetylated proteomic analysis. In conclusion, we provide a comprehensive analysis of HstD for its targets in histone or non-histone and its roles in fungal growth and development, DNA damage response, and secondary metabolism in A. terreus

    Essential APSES Transcription Factors for Mycotoxin Synthesis, Fungal Development, and Pathogenicity in Aspergillus flavus

    No full text
    Aflatoxins are a potent carcinogenic mycotoxin and has become a research model of fungal secondary metabolism (SM). Via systematically investigating the APSES transcription factors (TFs), two APSES proteins were identified: AfRafA and AfStuA. These play central roles in the synthesis of mycotoxins including aflatoxin and cyclopiazonic acid, and fungal development and are consequently central to the pathogenicity of the aflatoxigenic A. flavus. Loss of AfRafA not only dramatically suppressed aflatoxin cluster expression, subsequently reducing toxin synthesis both in vitro and in vivo, but also impaired conidia and sclerotia development. More importantly, aflatoxin biosynthesis as well as conidia and sclerotia development were fully blocked in ΔAfStuA. In addition, our results supported that AfStuA regulated the aflatoxin synthesis in an AflR-dependent manner. Intriguingly, it was revealed that AfRafA and AfStuA exert an antagonistic role in the regulation of biosynthesis of cyclopiazonic acid. In summary, two global transcriptional regulators for fungal development, mycotoxin production, and seed pathogenicity of the A. flavus system have been established. The two novel regulators of mycotoxins are promising targets for future plant breeding and for the development of fungicides

    Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping

    No full text
    A porous carbon (PC) material, containing carbon and oxygen only, was synthesized via carbonisation of a Zn-MOF (IRMOF-8) at 950 °C. Interestingly, the derived materials of this reaction exhibit excellent electrocatalytic activity, molecular selectivity and long-term durability. The fact that this material, which is effectively a 'pure' carbon, lacking any elemental doping, exhibits excellent oxygen reduction reaction (ORR) activity suggests that a mechanism not dependent on elemental doping is being utilised. We suggest the formation of defects arising from the removal of Zn atoms as a consequence of the calcination procedure play the critical role in this process

    Carbon for the oxygen reduction reaction: a defect mechanism

    No full text
    We demonstrate a new defect mechanism of carbons for the oxygen reduction reaction (ORR). It is predicted by the first principles calculations that a type of 585 defect on graphene (G585) is more effective than N-doping for the ORR, and our experimental investigations show strong support to this theoretical prediction

    Table_1_Exploration of the Regulatory Mechanism of Secondary Metabolism by Comparative Transcriptomics in Aspergillus flavus.XLS

    No full text
    <p>Mycotoxins cause a huge threaten to agriculture, food safety, and human and animal life. Among them, aflatoxins (AFs) have always been considered the most potent carcinogens, and filamentous fungi from Aspergillus genus are their major producers, especially A. flavus. Although the biosynthesis path of these chemicals had been well-identified, the regulatory mechanisms controlling expression of AF gene cluster were poorly understood. In this report, genome-wide transcriptome profiles of A. flavus from AF conducing [yeast sucrose media (YES)] and non-conducing [yeast peptone media (YEP)] conditions were compared by using deep RNA sequencing (RNA-seq), and the results revealed that AF biosynthesis pathway and biosynthesis of amino acids were significantly upregulated in YES vs. YEP. Further, a novel LaeA-like methyltransferase AFLA_121330 (Lael1) was identified for the first time, to play a specific role in the regulation of AF biosynthesis. Contrary to LaeA, which gene deletion reduced the level, lael1 deletion resulted in a significant increase in AF production. Further, co-expression network analysis revealed that mitochondrial pyruvate transport and signal peptide processing were potentially involved in AF synthesis for the first time, as well as biological processes of ribosome, branched-chain amino acid biosynthetic process and translation were co-regulated by AfRafA and AfStuA. To sum up, our analyses could provide novel insights into the molecular mechanism for controlling the AF and other secondary metabolite synthesis, adding novel targets for plant breeding and making fungicides.</p
    corecore