86 research outputs found

    4-Chloro-2-{3-chloro-2-[(3,5-dimethyl­piperidin-1-yl)meth­yl]phenyl­sulfan­yl}-6-methoxy­pyrimidine

    Get PDF
    In the title compound, C19H23Cl2N3OS, the dihedral angle between the benzene ring and the pyrimidine ring is 86.6 (9)°. The piperidine ring adopts a chair conformation

    Diversity of NC10 bacteria associated with sediments of submerged Potamogeton crispus (Alismatales: Potmogetonaceae)

    Get PDF
    Background The nitrite-dependent anaerobic methane oxidation (N-DAMO) pathway, which plays an important role in carbon and nitrogen cycling in aquatic ecosystems, is mediated by “Candidatus Methylomirabilis oxyfera” (M. oxyfera) of the NC10 phylum. M. oxyfera-like bacteria are widespread in nature, however, the presence, spatial heterogeneity and genetic diversity of M. oxyfera in the rhizosphere of aquatic plants has not been widely reported. Method In order to simulate the rhizosphere microenvironment of submerged plants, Potamogeton crispus was cultivated using the rhizobox approach. Sediments from three compartments of the rhizobox: root (R), near-rhizosphere (including five sub-compartments of one mm width, N1–N5) and non-rhizosphere (>5 mm, Non), were sampled. The 16S rRNA gene library was used to investigate the diversity of M. oxyfera-like bacteria in these sediments. Results Methylomirabilis oxyfera-like bacteria were found in all three sections, with all 16S rRNA gene sequences belonging to 16 operational taxonomic units (OTUs). A maximum of six OTUs was found in the N1 sub-compartment of the near-rhizosphere compartment and a minimum of four in the root compartment (R) and N5 near-rhizosphere sub-compartment. Indices of bacterial community diversity (Shannon) and richness (Chao1) were 0.73–1.16 and 4–9, respectively. Phylogenetic analysis showed that OTU1-11 were classified into group b, while OTU12 was in a new cluster of NC10. Discussion Our results confirmed the existence of M. oxyfera-like bacteria in the rhizosphere microenvironment of the submerged plant P. crispus. Group b of M. oxyfera-like bacteria was the dominant group in this study as opposed to previous findings that both group a and b coexist in most other environments. Our results indicate that understanding the ecophysiology of M. oxyfera-like bacteria group b may help to explain their existence in the rhizosphere sediment of aquatic plant

    Effect of Air Distribution on NO x

    No full text

    Optimizing the Growth of Silage Maize by Adjusting Planting Density and Nitrogen Application Rate Based on Farmers’ Conventional Planting Habits

    No full text
    Silage maize is cultivated due to its high nutritional value as a forage. China’s recent agricultural policy promotes the popularization and cultivation of silage maize. The production of silage maize is affected by planting density and nitrogen application. Based on investigating the planting habits of local farmers, we adjusted the planting density and nitrogen application rate to optimize the growth of silage maize. This study was conducted to investigate the effects of planting density (65,000 plant ha−1 (D1), 80,000 plant ha−1 (D2), and 95,000 plant ha−1 (D3)) and nitrogen rate (150 kg ha−1 (N1), 230 kg ha−1 (N2), and 310 kg ha−1 (N3)) on growth, yield, and quality of silage maize using a two-factor random block design. Planting density and nitrogen fertilizer significantly affected plant height, stem diameter, leaf area index, crude protein, neutral detergent fiber, acid detergent fiber, and starch of silage maize. In summary, the combination of a planting density of 80,000 plants ha−1 and a nitrogen application rate of 310 kg ha−1 produced a higher crude protein and starch yield and better palatability and quality; this result can aid silage maize growth

    Enhanced Photocatalytic Degradation of Methyl Orange Dye under the Daylight Irradiation over CN-TiO2 Modified with OMS-2

    No full text
    In this study, CN-TiO2 was modified with cryptomelane octahedral molecular sieves (OMS-2) by the sol-gel method based on the self-assembly technique to enhance its photocatalytic activity under the daylight irradiation. The synthesized samples were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and porosimeter analysis. The results showed that the addition of OMS-2 in the sol lead to higher Brunauer-Emmett-Teller (BET) surface area, pore volume, porosity of particle after heat treatment and the specific surface area, porosity, crystallite size and pore size distribution could be controlled by adjusting the calcination temperature. Compared to the CN-TiO2-400 sample, CN-TiO2/OMS-2-400 exhibited greater red shift in absorption edge of samples in visible region due to the OMS-2 coated. The enhancement of photocatalytic activity of CN-TiO2/OMS-2 composite photocatalyst was subsequently evaluated for the degradation of the methyl orange dye under the daylight irradiation in water. The results showed that the methyl orange dye degradation rate reach to 37.8% for the CN-TiO2/OMS-2-400 sample under the daylight irradiation for 5 h, which was higher than that of reference sample. The enhancement in daylight photocatalytic activities of the CN-TiO2/OMS samples could be attributed to the synergistic effects of OMS-2 coated, larger surface area and red shift in adsorption edge of the prepared sample

    Mechanisms of the photochemical release of phosphate from resuspended sediments under solar irradiation

    No full text
    In previous studies, resuspended sediments that were exposed to simulated solar irradiation could release dissolved phosphate (PO43-). However, themechanisms of phosphate release remain unclear. In this research, a battery of experiments was performed to reveal the mechanisms of the photochemical release of phosphate from resuspended sediments of a shallow eutrophic lake under solar irradiation. The results show that the PO43- released in resuspended sediments was significantly higher than that in the dark control or in water alone after treatment with solar irradiation for 6 h. The results of sequential chemical extractions showed that the concentrations of labile organic, moderately labile organic and residual organic phosphorus decreased in the resuspended sediment after 6 h of solar irradiation; of these, moderately labile organic phosphorus was the greatest contributor to the release of dissolved phosphate in resuspended sediment. Orthophosphate, phosphate monoesters, phosphate diesters and pyrophosphate were detectedwith P-31 NMR. It isworth mentioning that the diester- P and pyro-P species disappeared after 6 h of irradiation. In addition, enzyme activity and radical trapping experimentswere applied to identify the roles of biomineralization and photochemical degradation during phosphate release from resuspended sediments under solar irradiation. The amount of PO43- released in fresh sediment was greater than that in the autoclaved sediment, which should be attributed to the higher alkaline phosphatase activity in the fresh sediment. However, the PO43- released from the photochemical degradation of organic phosphorus is the primary phosphate source during sediment resuspension under 6 h of solar irradiation. The phosphate photorelease was inhibited when methanol was added to the suspension and decreased significantly when the concentration of methanol was increased from 0.5M to 2.0M. All of these results suggest that photochemical processes may lead to PO43- release from sediment in aquatic environments. (C) 2017 Elsevier B.V. All rights reserved

    Progress of Research on the Physiology and Molecular Regulation of Sorghum Growth under Salt Stress by Gibberellin

    No full text
    Plant growth often encounters diverse abiotic stresses. As a global resource-based ecological problem, salinity is widely distributed and one of the major abiotic stresses affecting crop yields worldwide. Sorghum, a cereal crop with medium salt tolerance and great value for the development and utilization of salted soils, is an important source of food, brewing, energy, and forage production. However, in soils with high salt concentrations, sorghum experiences low emergence and suppressed metabolism. It has been demonstrated that the effects of salt stress on germination and seedling growth can be effectively mitigated to a certain extent by the exogenous amendment of hormonal gibberellin (GA). At present, most of the studies on sorghum salt tolerance at home and abroad focus on morphological and physiological levels, including the transcriptome analysis of the exogenous hormone on sorghum salt stress tolerance, the salt tolerance metabolism pathway, and the mining of key salt tolerance regulation genes. The high-throughput sequencing technology is increasingly widely used in the study of crop resistance, which is of great significance to the study of plant resistance gene excavation and mechanism. In this study, we aimed to review the effects of the exogenous hormone GA on leaf morphological traits of sorghum seedlings and further analyze the physiological response of sorghum seedling leaves and the regulation of sorghum growth and development. This review not only focuses on the role of GA but also explores the signal transduction pathways of GA and the performance of their responsive genes under salt stress, thus helping to further clarify the mechanism of regulating growth and production under salt stress. This will serve as a reference for the molecular discovery of key genes related to salt stress and the development of new sorghum varieties
    corecore