25 research outputs found

    Long Non-Coding RNA PVT1/miR-150/ HIG2 Axis Regulates the Proliferation, Invasion and the Balance of Iron Metabolism of Hepatocellular Carcinoma

    Get PDF
    Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B∌1013 GB\rm \sim 10^{13}~G, D∌6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s−1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Establishment and application of a survival rate graph model based on biomarkers and imaging indexes after primary hepatocellular carcinoma resection

    No full text
    Abstract Background Primary liver cancer (PLC) is a highly malignant disease. This study developed an effective and convenient tool to evaluate survival times of patients after hepatectomy, which can provide a reference point for clinical decisions. Methods Clinical and laboratory data of 243 patients with PLC after hepatectomy were collected. Univariate cox regression analysis, Lasso regression analysis and multivariate cox regression analysis were used to determine the best prediction index. Multivariate cox regression analysis was used to construct a survival prediction model. A receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis (DCA) were used to verify the model. The patients in this model were divided into was divided into high‐risk and low‐risk groups according to the optimal cut‐off value of the ROC curve for different prognostic years. Kaplan–Meier survival analysis and log‐rank test were used to analyse the survival differences between the two groups. Results Tumour size, portal vein thrombosis, distant metastasis, alpha‐fetoprotein and protein induced by vitamin K absence or antagonist‐II levels were independent risk factors for overall survival (OS) after PLC surgery. The area under the concentration‐time curve for 2‐, 3‐ and 4‐year survival of patients was 0.710, 0.825 and 0.919, respectively, with a good calibration of the Hosmer–Lemeshow test (p > 0.05) and net benefit. The mortality rates in patients with 2, 3 and 4 years of survival were 70.59%, 67.83% and 66.67% for the high‐risk group and 21.84%, 22.50% and 22.67% for the low‐risk group, respectively. The mortality rate of the high‐risk group was significantly higher than that of the low‐risk group (p < 0.05). Conclusion The OS model of prognosis after PLC surgery constructed in this study can be used to predict the 2‐, 3‐ and 4‐year survival prognoses of patients, and patients with different prognosis years can be re‐stratified so that they achieve more accurate and personalised assessment, thereby providing a reference point for clinical decision‐making

    Bisphenol A and 17&alpha;-Ethinylestradiol Removal from Water by Hydrophobic Modified Acicular Mullite

    No full text
    The hydrophilicity and hydrophobicity of adsorbents have an important influence on organic pollutants adsorption. To effectively remove bisphenol A (BPA) and 17-acetylene estradiol (EE2) from water, acicular mullite was modified by cetyl trimethyl ammonium bromide (CTMAB) to increase the hydrophobicity of the mullite. The adsorption process and mechanism of BPA and EE2 by modified acicular mullite were studied in detail. Results indicated that the concentration of CTMAB solution was related to the contact angle of CTMAB-modified mullite (CTMAB-M). The optimal concentration of CTMAB was 4 mmol/L. The CTMAB-M could adsorb more hydrophobic organic pollutants than virgin acicular mullite. Due to the electrostatic attraction and hydrophobic partitioning, the adsorption amount of BPA and EE2 on CTMAB-M increased with increasing pH. The adsorption amounts of BPA and EE2 on CTMAB-M increase with increasing ionic strength. The adsorption kinetics of BPA and EE2 adsorption on CTMAB-M could be best described by the pseudo second-order kinetics model. Thermodynamic analysis showed that the low temperature favored the adsorption of BPA and EE2 on CTMAB-M, and the adsorption was driven by entropy increase. Site energy studies indicated that BPA and EE2 firstly occupy high-energy adsorption sites and then switch to low-energy sites during the adsorption process. The average adsorption site energy &mu;(E*) of EE2 on CTMAB-M is smaller than BPA. CTMAB modification can significantly improve the removal efficiency of ceramsite on EDCs

    Bisphenol A and 17α-Ethinylestradiol Removal from Water by Hydrophobic Modified Acicular Mullite

    No full text
    The hydrophilicity and hydrophobicity of adsorbents have an important influence on organic pollutants adsorption. To effectively remove bisphenol A (BPA) and 17-acetylene estradiol (EE2) from water, acicular mullite was modified by cetyl trimethyl ammonium bromide (CTMAB) to increase the hydrophobicity of the mullite. The adsorption process and mechanism of BPA and EE2 by modified acicular mullite were studied in detail. Results indicated that the concentration of CTMAB solution was related to the contact angle of CTMAB-modified mullite (CTMAB-M). The optimal concentration of CTMAB was 4 mmol/L. The CTMAB-M could adsorb more hydrophobic organic pollutants than virgin acicular mullite. Due to the electrostatic attraction and hydrophobic partitioning, the adsorption amount of BPA and EE2 on CTMAB-M increased with increasing pH. The adsorption amounts of BPA and EE2 on CTMAB-M increase with increasing ionic strength. The adsorption kinetics of BPA and EE2 adsorption on CTMAB-M could be best described by the pseudo second-order kinetics model. Thermodynamic analysis showed that the low temperature favored the adsorption of BPA and EE2 on CTMAB-M, and the adsorption was driven by entropy increase. Site energy studies indicated that BPA and EE2 firstly occupy high-energy adsorption sites and then switch to low-energy sites during the adsorption process. The average adsorption site energy Ό(E*) of EE2 on CTMAB-M is smaller than BPA. CTMAB modification can significantly improve the removal efficiency of ceramsite on EDCs
    corecore