27 research outputs found

    EEG Based Emotion Identification Using Unsupervised Deep Feature Learning

    Get PDF
    Capturing user’s emotional state is an emerging way for implicit relevance feedback in information retrieval (IR). Recently, EEG-based emotion recognition has drawn increasing attention. However, a key challenge is effective learning of useful features from EEG signals. In this paper, we present our on-going work on using Deep Belief Network (DBN) to automatically extract high-level features from raw EEG signals. Our preliminary experiment on the DEAP dataset shows that the learned features perform comparably to the use of manually generated features for emotion recognition

    The Ecological and Social Effects of Cropland Expansion in the HehuangValley during theMing and Qing Dynasties

    No full text
    In this paper, we strive to showthat the protection of the ecological environment of the Yellow River can impact regional sustainable development and human society. Based on GIS and historical documents, we selected 1640AD in the late Ming Dynasty and 1726, 1746, and 1856AD in the early and middle Qing Dynasty as time sections to reconstruct the distributions of cropland and vegetation in the Hehuang valley. Our results showed that the cropland in the Ming Dynasty was mainly distributed in the valley of Sainei;during the early and mid-Qing Dynasty, the cropland reclamation broke the boundary of the Great Wall. Furthermore, replacing vegetation with cropland resulted in the rapid decline of water conservation capacity in the medium and high mountain areas. The decline of water conservation capacity significantly contributed to the frequent occurrence of natural disasters, such as drought, flood, water erosion, and sand pressure, which led to decreased cropland output. By the mid-Qing Dynasty, the cropland area had saturated while the population was still growing, and the grain yield could not meet the demands of the expanding population. Due to both natural and social factors, two social upheavals occurred in the late Qing Dynasty, which significantly affected the development of the regional social economy. Therefore, the destruction of the ecological environment and the reduction of water conservation capacity became an important driving force for the destruction of sustainable regional development

    Experimental study on the effect of freeze-thaw cycles on the shear characteristics of frozen soil-composite geotextile interface

    No full text
    The shear characteristics of the soil-geosynthetic interface are the primary factors affecting the load transmission rules. The interfacial shear parameters are affected by cycles of freeze-thaw and alter as a result of the periodic temperature fluctuations. Using an enhanced temperature-controlled direct shear apparatus, this paper investigates the interfacial shear characteristics between silty clay and composite geotextile according to freeze-thaw cycles. Analysis is done on how the interfacial stress-strain relationship, strength, and strength characteristics are affected by the soil moisture content, normal pressure, and test temperature. The results demonstrate that at low freezing temperatures and high moisture contents, the interfacial stress-strain curve is strongly influenced by cycles of freeze-thaw, and that the interfacial shear strength tends to grow initially before decreasing as the number of freeze-thaw cycles increases. The variations in interfacial shear strength correlate to the changes in interfacial friction angle and interfacial cohesion, and the primary element influencing the variation of shear strength is the alteration in interfacial cohesion. With a high soil moisture content initially, the migrating water has greater effect on shear strength during the freeze-thaw cycle. The findings of the significant level research indicate that the moisture content has a significant influence on the shear strength

    Experimental analysis of femoral head intraosseous vascular anastomosis in the treatment of porcine subcapital femoral neck fractures

    No full text
    Introduction: Femoral neck fractures are challenging injuries associated with a compromised blood supply to the femoral head, leading to a high risk of avascular necrosis and poor clinical outcomes. This study aimed to investigate the efficacy of femoral head intraosseous vascular anastomosis in the treatment of porcine sub-capital femoral neck fractures. Methods: Ten Landrace pigs were used as experimental animal models. The femoral head was completely removed after femoral neck sub-cephalic fracture. It was fixed on the medial side of the knee joint, and the blood supply to the femoral head was reconstructed by anastomosing the femoral head vessels. One week later, blood flow in the femoral head was observed by borehole, digital subtraction angiography examination, and hematoxylin and eosin staining. Further, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling tests were performed to detect pathological changes in the femoral head. Results: After one-week, digital subtraction angiography of the femoral head revealed a blood circulation rate of 70 %, and the blood seepage rate of the borehole was 80 %. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling test results showed that necrosis of bone marrow cells in the experimental group was significantly improved compared to that in the control group. Discussion: This study highlights the potential benefits of femoral head intraosseous vascular anastomosis in the treatment of porcine sub-capital femoral neck fractures. Further research and clinical trials are warranted to validate these findings and to explore the translational potential of this technique in human patients

    Angiopoietin-like 4 promotes epidermal stem cell proliferation and migration and contributes to cutaneous wound re-epithelialization

    No full text
    Proliferation and migration of epidermal stem cells (EpSCs) are essential for epithelialization during skin wound healing. Angiopoietin-like 4 (ANGPTL4) has been reported to play an important role in wound healing, but the mechanisms involved are not fully understood. Here, we investigate the contribution of ANGPTL4 to full-thickness wound re-epithelialization and the underlying mechanisms using Angptl4-knockout mice. Immunohistochemical staining reveals that ANGPTL4 is significantly upregulated in the basal layer cells of the epidermis around the wound during cutaneous wound healing. ANGPTL4 deficiency impairs wound healing. H&E staining shows that ANGPTL4 deficiency significantly reduces the thickness, length and area of the regenerated epidermis postwounding. Immunohistochemical staining for markers of EpSCs (α6 integrin and β1 integrin) and cell proliferation (PCNA) shows that the number and proliferation of EpSCs in the basal layer of the epidermis are reduced in ANGPTL4-deficient mice. In vitro studies show that ANGPTL4 deficiency impedes EpSC proliferation, causes cell cycle arrest at the G1 phase and reduces the expressions of cyclins D1 and A2, which can be reversed by ANGPTL4 overexpression. ANGPTL4 deletion suppresses EpSC migration, which is also rescued by ANGPTL4 overexpression. Overexpression of ANGPTL4 in EpSCs accelerates cell proliferation and migration. Collectively, our results indicate that ANGPTL4 promotes EpSC proliferation by upregulating cyclins D1 and A2 expressions and accelerating the cell cycle transition from G1 to S phase and that ANGPTL4 promotes skin wound re-epithelialization by stimulating EpSC proliferation and migration. Our study reveals a novel mechanism underlying EpSC activation and re-epithelialization during cutaneous wound healing

    Flexible Polymer Ultra-Fine Fiber with Extreme Toughness

    No full text
    Fiber materials with multilevel interior structures have myriad applications in many fields due to their unique properties. In this study, we develop a bioinspired flexible ultrafine polymer fiber via an integrated microfluidic-electrospinning technology. The fiber possesses periodic hollow and tubular chambers with a shell layer of approximately 150 nm in thickness extremely like natural bamboo. The single fiber with a diameter of ∼1.5 μm exhibits the Young’s modulus ranging from 2 to 7 MPa measured with atomic force microscopy (AFM). The fiber with periodic hollow chambers and extreme toughness can find many applications in medicine, industry, and agriculture

    The polarization crossfire (PCF) sensor suite focusing on satellite remote sensing of fine particulate matter PM<SUB>2.5</SUB> from space

    No full text
    International audienceFocusing on satellite remote sensing of fine particulate matter PM2.5 from space, the polarization crossfire (PCF) strategy has been developed, which includes the PCF satellite suite and the particulate matter remote sensing (PMRS) model. Expected to be the first dedicated satellite sensor for PM2.5 remote sensing globally, the PCF suite is composed by the Particulate Observing Scanning Polarimeter (POSP) and the Directional Polarimetric Camera (DPC) together, and will be launched on board the Chinese GaoFen-5(02) satellite in 2021. Since the cross-track polarimetric measurements of POSP fully cover the multi-viewing swath of DPC, the sophisticated joint measurements could be obtained from the PCF suite in the range of 380-2250 nm including intensity and polarization, by the means of pixel matching and the cross calibration from POSP to DPC. Based on the optimal estimation inversion framework and synthetic data of PCF, the retrieval performances of key aerosol parameters are systematically investigated and assessed for the PM2.5 estimation by the PMRS model. For the design of inversion strategy for PCF, we firstly test the retrievals of aerosol optical depth (AOD), fine mode fraction (FMF), aerosol layer height (H) and the fine-mode real part of complex refractive index (mrf) simultaneously with surface parameters from the synthetic PCF data, and then the columnar volume-to-extinction ratio of fine particulates (VEf), the aerosol effective density (ρf) and the hygroscopic growth factor of fine-mode particles (f(RH)) are further obtained by the corresponding empirical relationship. The propagation errors from aerosol parameters to PM2.5 retrieval are investigated with the key procedures of PMRS model. In addition, the influences of improving calibration accuracy of PCF on PM2.5 retrievals are discussed, as well as the retrieval feasibility of PM10 by PCF strategy
    corecore