190 research outputs found

    A flow-induced structure-based kinetic energy harvester

    Get PDF
    In this paper, a strategy utilizing a pair of cylinders which are put on the both sides of the cantilever beam and perpendicular to the water flow direction to harvest the energy is demonstrated. The novel flow induced structure based energy harvester consists of a pair inducing objects (cylinders) and one L-type cantilever beam. Macro fiber composite (MFC) is attached at the fixed end of the cantilever beam to convert the kinetic energy into electric power. The structure could induce the vortex shedding from the upstream flow and harvest the energy from it. Compared with the former studies with one or series layout inducing objects, the proposed structure could both improve the power output of flow induced energy harvester and avoid the damage happening in complex working conditions. Analytical modelling and experiment methods are both utilized in the research to cross verify the results. The characteristics related with water flow speed and center distance variations between inducing objects are discussed in the paper as well. It is found that when the water flow speed is 0.2m/s and the center distance is 30mm, the output power is optimal of 0.16ÎĽW and the power density is 0.4mW/m2

    Energy harvesting utilizing reciprocating flow-induced torsional vibration on a T-shaped cantilever beam

    Get PDF
    This paper proposes a T-shaped cantilever energy harvester powered by flow-induced torsional vibration. To collect and convert the mechanical (kinetic) energy into electric power, a pair of symmetrical acrylic cylindrical bluff bodies were installed onto the bottom surface of the T-shaped cantilever beam, one at each end; There is also one patch of Macro Fiber Composite (MFC) used as an energy collector and converter which was attached to the fixed end of the cantilever beam. This proposed setup of the energy harvester is able to generate sustainable electric power by harvesting natural mechanical power resulted from the torsional vibration of the beam due to fluid's vortex shedding effects. The proposed energy harvester has the novelty in that our approach harvests fluid flow's energy in a reciprocal fashion making full use of renewable energy incurred in areas surrounding the two bluff bodies. Both the theoretical and experimental analyses on the proposed energy harvesting structure were performed and demonstrated in this paper. The case in the test rig we studied on the proposed energy harvester was able to generate sustainable electric power of approximately 1.0 µW when flow speed was measured to be 0.33 m/s flowing through two bluff bodies each of 29.5 mm diameter. This work also looks into and discusses pros and cons of various scenarios in terms of structural geometric variations for system optimization of the proposed energy harvester

    Smart energy harvesting utilizing flow-induced techniques

    Get PDF
    The flow-induced vibration is one of the most common vibrational phenomena in the ambient environment, on which the previous studies were mainly dealing with methodologies as to how to control and reduce vibrations of objects in the flow field. Facing the growing demand of the power supply of the Internet of Things (IoT) and the Wireless Sensor Network (WSN), the energy harvesting technique utilizing multifaceted dynamic effects incurred within natural water flows is a new and meaningful area worth of further research. In this thesis, two novel strategies of the flow-induced vibration energy harvesting techniques were proposed and investigated. One is focused on the flow pattern control with the creative layouts of the bluff bodies. The other could harvest the energy from the reciprocating water flows with the utilization of the torsional vibration mode of the energy harvester. Both methods were firstly proposed and verified in this thesis. The work could not only develop the power output of the energy harvester, but also be applied in the actual hostile ambient environment. The contributions to the research provided by this thesis were made also on the optimization of the proposed topologies with numerous experimental, analytical and computational approaches. The detailed characteristics were investigated and concluded in the thesis to promote the applications of the technologies. The energy storage system was also studied and tested

    Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of Poly(lactic acid)

    Get PDF
    The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates) were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid) (PDLA) acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA) indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young's modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization

    Sculpting Molecules in 3D: A Flexible Substructure Aware Framework for Text-Oriented Molecular Optimization

    Full text link
    The integration of deep learning, particularly AI-Generated Content, with high-quality data derived from ab initio calculations has emerged as a promising avenue for transforming the landscape of scientific research. However, the challenge of designing molecular drugs or materials that incorporate multi-modality prior knowledge remains a critical and complex undertaking. Specifically, achieving a practical molecular design necessitates not only meeting the diversity requirements but also addressing structural and textural constraints with various symmetries outlined by domain experts. In this article, we present an innovative approach to tackle this inverse design problem by formulating it as a multi-modality guidance generation/optimization task. Our proposed solution involves a textural-structure alignment symmetric diffusion framework for the implementation of molecular generation/optimization tasks, namely 3DToMolo. 3DToMolo aims to harmonize diverse modalities, aligning them seamlessly to produce molecular structures adhere to specified symmetric structural and textural constraints by experts in the field. Experimental trials across three guidance generation settings have shown a superior hit generation performance compared to state-of-the-art methodologies. Moreover, 3DToMolo demonstrates the capability to generate novel molecules, incorporating specified target substructures, without the need for prior knowledge. This work not only holds general significance for the advancement of deep learning methodologies but also paves the way for a transformative shift in molecular design strategies. 3DToMolo creates opportunities for a more nuanced and effective exploration of the vast chemical space, opening new frontiers in the development of molecular entities with tailored properties and functionalities

    Causal effects of gut microbiota on the risk of osteomyelitis: a Mendelian randomization study

    Get PDF
    BackgroundOsteomyelitis is characterized by an inflammatory process initiated by microorganisms, leading to infection and subsequent degradation of bone tissue. Several studies have indicated a potential link between gut microbiota and the occurrence of osteomyelitis. Utilizing the benefits of Mendelian randomization, which mitigates issues of confounding and reverse causation, we employed this approach to ascertain the presence of a causal connection between gut microbiota and osteomyelitis. Additionally, we aimed to pinpoint gut microbiota that could potentially exert substantial influence.MethodsWe performed a rigorous screening of single nucleotide polymorphisms in GWAS summary statistics for gut microbiota and osteomyelitis. The 2,542 instrumental variables obtained after screening were subjected to MR analyses, including inverse variance weighting, weighted median, weighted mode, MR-Egger, and Mendelian randomization pleiotropy residual sum and outlier test. We then validated the reliability of the results by performing sensitivity analyses on the MR of 196 well-defined gut microbiota.ResultWe established a causal relationship between gut microbiota and osteomyelitis through MR analysis. Additionally, we identified a taxon of significant importance and six taxons with nominal significance. Specifically, the family Bacteroidales S24.7 group exhibited an association with a diminished risk of osteomyelitis development. Conversely, the class Bacilli, class Bacteroidia, order Bacteroidales, order Lactobacillales, family Streptococcaceae, and genus Coprococcus3 displayed an increased risk of developing osteomyelitis. The MR outcomes for these seven taxa remained stable throughout a series of sensitivity analyses.ConclusionThis study demonstrated a causal relationship between gut microbiota and osteomyelitis by Mendelian randomization. We hope that this study will provide a new direction for the treatment of osteomyelitis, which has a paucity of therapeutic options

    Synthesis, Characterization, and Flocculation Properties of Branched Cationic Polyacrylamide

    Get PDF
    A water soluble branched cationic polyacrylamide (BCPAM) was synthesized using solution polymerization. The polymerization was initiated using potassium diperiodatocuprate, K5[Cu(HIO6)2](Cu(III)), initiating the self-condensing vinyl copolymerization of acrylamide and acryloxyethyltrimethyl ammonium chloride (DAC) monomer. The resulting copolymer was characterized by the use of Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Its flocculation properties were evaluated with standard jar tests of sewage. The effects of initiator concentration, monomer concentration, reaction temperature, and the mass ratio of monomers on intrinsic viscosity and flocculation properties of the product were determined using single-factor experiments and orthogonal experiment

    Tumor characteristics and surgical outcome in incidentally discovered pheochromocytomas and paragangliomas

    Get PDF
    Objective: The proportion of incidentally discovered pheochromocytomas and paragangliomas (PPGL) has increased over time. However, our knowledge of them is quite limited. The purpose of this retrospective study is to generalize the commonalities in incidentally discovered PPGL, offer evidence for clinical diagnosis and management. Methods: Five hundred twenty-six patients were included in our study after filtration from the database of West China Hospital of Sichuan University between May, 2007 and December, 2016. Among the patients, 148 of them were incidental findings and 378 of them were suspected findings. All patients’ demography and tumor characteristics were recorded in detail, especially hemodynamic records and hormonal assays. The reasons for taking radiography were also collected. Most patients received preoperative medical preparation. Intraoperative and postoperative courses as well as surgical outcomes were also analyzed to identify differences between incidental findings and suspected findings. Results: Incidentally discovered PPGL took up 28.1% of the study population. Suspected PPGLs had a higher prevalence of hypertension, lower proportion of non-functioning PPGL, higher prevalence of MEN2 and better post-surgical blood pressure recovery than incidental finding group. However, patients in the incidental finding group showed no significant difference in preoperative blood pressure and hormonal assays with suspected findings in metaphrine and normetaphrine in plasma and urine (P > 0.05). Conclusions: Due to the development of technology, more PPGLs are discovered incidentally. Considering the tumor characteristics and surgical outcome, surgical decisions should be made more cautiously

    SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model

    Get PDF
    BackgroundCentral sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway.MethodsInflammatory soup was repeatedly administered to male Sprague–Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT–PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining.ResultsAfter repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1.ConclusionThe results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants
    • …
    corecore