560 research outputs found

    Multi-stage Suture Detection for Robot Assisted Anastomosis based on Deep Learning

    Full text link
    In robotic surgery, task automation and learning from demonstration combined with human supervision is an emerging trend for many new surgical robot platforms. One such task is automated anastomosis, which requires bimanual needle handling and suture detection. Due to the complexity of the surgical environment and varying patient anatomies, reliable suture detection is difficult, which is further complicated by occlusion and thread topologies. In this paper, we propose a multi-stage framework for suture thread detection based on deep learning. Fully convolutional neural networks are used to obtain the initial detection and the overlapping status of suture thread, which are later fused with the original image to learn a gradient road map of the thread. Based on the gradient road map, multiple segments of the thread are extracted and linked to form the whole thread using a curvilinear structure detector. Experiments on two different types of sutures demonstrate the accuracy of the proposed framework.Comment: Submitted to ICRA 201

    A Multi-Robot Cooperation Framework for Sewing Personalized Stent Grafts

    Get PDF
    This paper presents a multi-robot system for manufacturing personalized medical stent grafts. The proposed system adopts a modular design, which includes: a (personalized) mandrel module, a bimanual sewing module, and a vision module. The mandrel module incorporates the personalized geometry of patients, while the bimanual sewing module adopts a learning-by-demonstration approach to transfer human hand-sewing skills to the robots. The human demonstrations were firstly observed by the vision module and then encoded using a statistical model to generate the reference motion trajectories. During autonomous robot sewing, the vision module plays the role of coordinating multi-robot collaboration. Experiment results show that the robots can adapt to generalized stent designs. The proposed system can also be used for other manipulation tasks, especially for flexible production of customized products and where bimanual or multi-robot cooperation is required.Comment: 10 pages, 12 figures, accepted by IEEE Transactions on Industrial Informatics, Key words: modularity, medical device customization, multi-robot system, robot learning, visual servoing, robot sewin

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde

    2-Amino-4-(2-chloro­phen­yl)-7,7-di­methyl-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbonitrile hemihydrate

    Get PDF
    The asymmetric unit of the title compound, C18H17ClN2O2·0.5H2O, contains two organic mol­ecules and one solvent water mol­ecule. In each organic mol­ecule, the cyclo­hexene ring adopts an envelope conformation with the C atom connecting the two methyl groups on the flap; the 4H-pyran ring is nearly planar [maximum deviation = 0.113 (3) Å in one mol­ecule and 0.089 (3) Å in the other mol­ecule] and is approximately perpendicular to the chloro­phenyl ring [dihedral angle = 86.43 (15)° in one mol­ecule and 89.73 (15)° in the other mol­ecule]. Inter­molecular N—H⋯N, N—H⋯O, O—H⋯O and O—H⋯Cl hydrogen bonding is present in the crystal

    Crashworthiness analysis of the structure of metro vehicles constructed from typical materials and the lumped parameter model of frontal impact

    Get PDF
    This paper establishes a Finite Element (FE) model of a rigid barrier impact of a single vehicle constructed from carbon steel, stainless steel, and aluminum alloy, which are three typical materials used in metro vehicle car body structures. The different responses of the three materials during the collision are compared. According to the energy absorption, velocity, deformation and collision force flow characteristics of each vehicle, the relationship between the energy absorption ratio of the vehicle body and the energy absorption ratio of its key components is proposed. Based on the collision force flow distribution proportion of each component, the causes of the key components’ deformation are analysed in detail. The internal relationship between the deformation, energy absorption and impact force of the key components involved in a car body collision is elucidated. By determining the characteristic parameters describing the vehicle’s dynamic stiffness, a metro vehicle frontal impact model using lumped parameters is established that provides a simple and efficient conceptual design method for railway train safety design. These research results can be used to guide the design of railway trains for structural crashworthiness

    Lithofacies paleogeography mapping and reservoir prediction in tight sandstone strata: A case study from central Sichuan Basin, China

    Get PDF
    AbstractSand-rich tight sandstone reservoirs are potential areas for oil and gas exploration. However, the high ratio of sandstone thickness to that of the strata in the formation poses many challenges and uncertainties to traditional lithofacies paleogeography mapping. Therefore, the prediction of reservoir sweet spots has remained problematic in the field of petroleum exploration. This study provides new insight into resolving this problem, based on the analyses of depositional characteristics of a typical modern sand-rich formation in a shallow braided river delta of the central Sichuan Basin, China. The varieties of sand-rich strata in the braided river delta environment include primary braided channels, secondary distributary channels and the distribution of sediments is controlled by the successive superposed strata deposited in paleogeomorphic valleys. The primary distributary channels have stronger hydrodynamic forces with higher proportions of coarse sand deposits than the secondary distributary channels. Therefore, lithofacies paleogeography mapping is controlled by the geomorphology, valley locations, and the migration of channels. We reconstructed the paleogeomorphology and valley systems that existed prior to the deposition of the Xujiahe Formation. Following this, rock-electro identification model for coarse skeletal sand bodies was constructed based on coring data. The results suggest that skeletal sand bodies in primary distributary channels occur mainly in the valleys and low-lying areas, whereas secondary distributary channels and fine deposits generally occur in the highland areas. The thickness distribution of skeletal sand bodies and lithofacies paleogeography map indicate a positive correlation in primary distributary channels and reservoir thickness. A significant correlation exists between different sedimentary facies and petrophysical properties. In addition, the degree of reservoir development in different sedimentary facies indicates that the mapping method reliably predicts the distribution of sweet spots. The application and understanding of the mapping method provide a reference for exploring tight sandstone reservoirs on a regional basis

    Hyperglycemia Induces the Variations of 11 β

    Get PDF
    In this paper, we first observed that there were differences in expressions of 11β-HSD1 and PPAR-γ, in hippocampi and hypothalami, among constant hyperglycemia group, control group and the fluctuant glycemia group, using Immunohistochemical analysis. However, whether in expression o f 11β-HSD1 or PPAR-γ, there were no statistic differences between the control group or the fluctuant glycemia group. So, we removed the fluctuant glycemia group, retaining only constant hyperglycemia group and control group, being fed for 8 weeks. After 8 weeks of induction, 11β-HSD1 expression increased and PPAR-γ expression decreased in the constant hyperglycemia group compared with control group, both in hippocampi and hypothalami, by Western Blot. The constant hyperglycemia group also showed impaired cognition in MORRIS watermaze, lower serum corticosterone level, and higher Serum ACTH concentration after 8 weeks. We inferred that the cognition impairment may be related to the abnormal expression of 11β-HSD1 and PPAR-γ in central nerves system. As for 11β-HSD1 is a regulating enzyme, converting the inactive 11-dehydrocorticosterone into the active glucocorticoid corticosterone, thus amplifying GC action in local tissues. It is also well known that high local GC levels can affect the cognitive function. In addition, PPAR-a protective receptor, which is related to cognition

    A Dynamic-Order Fractional Dynamic System

    Full text link
    Multi-system interaction is an important and difficult problem in physics. Motivated by the experimental result of an electronic circuit element "Fractor", we introduce the concept of dynamic-order fractional dynamic system, in which the differential-order of a fractional dynamic system is determined by the output signal of another dynamic system. The new concept offers a comprehensive explanation of physical mechanism of multi-system interaction. The properties and potential applications of dynamic-order fractional dynamic systems are further explored with the analysis of anomalous relaxation and diffusion processes.Comment: 10 pages, 5 figure
    • …
    corecore