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A Multi-Robot Cooperation Framework for Sewing
Personalized Stent Grafts
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Abstract—This paper presents a multi-robot system for manu-
facturing personalized medical stent grafts. The proposed system
adopts a modular design, which includes: a (personalized) man-
drel module, a bimanual sewing module, and a vision module.
The mandrel module incorporates the personalized geometry of
patients, while the bimanual sewing module adopts a learning-
by-demonstration approach to transfer human hand-sewing skills
to the robots. The human demonstrations were firstly observed
by the vision module and then encoded using a statistical
model to generate the reference motion trajectories. During
autonomous robot sewing, the vision module plays the role of
coordinating multi-robot collaboration. Experiment results show
that the robots can adapt to generalized stent designs. The
proposed system can also be used for other manipulation tasks,
especially for flexible production of customized products and
where bimanual or multi-robot cooperation is required.

Index Terms—Modularity, customization, multi-robot system,
robot learning, visual servoing.

I. INTRODUCTION

The latest development of robotics, sensing and information
technology is driving the future of Industry 4.0. One of the
key concepts is “smart factories”: factories with flexible pro-
duction lines to produce quality products tailored for customer
requirements [1]. Different from the current practice, a smart
factory requires a single production process to finish multiple
products with different designs. Such a scheme needs to be
equipped with: 1) smart machines or robots that can program
themselves automatically according to customized designs;
2) self-optimizing mechanisms that can react to changing
conditions during the production process; 3) real time sensing
ability to monitor and guide the process to ensure accuracy.

In this paper, we propose a multi-robot manufacturing
scheme for flexible production of personalized medical stent
grafts. A stent graft, as shown in Fig. 1, is a tubular structure
composed of a fabric tube, the graft, supported by multiple
metal rings called stents. It is a medical device commonly used
during endovascular surgery for treating vascular diseases such
as Abdominal Aortic Aneurysms (AAA), a major contributor
to cardiovascular related deaths in the Western world [2].
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(a) (b)

Fig. 1: (a) Hand sewing of a personalized stent graft. (b) A person-
alized stent graft. The maximum diameter is 34 mm.

While endovascular repair has been increasingly utilized,
there are very few providers of personalized stent grafts [3].
Each personalized stent graft is designed to fit a patient’s
specific anatomical structures, e.g. the diameter and length
of the aneurysm, obtained from their computed tomography
(CT) or magnetic resonance (MR) scans. Similar to tailored
garments, most of these personalized devices are handmade,
requiring an extensive period of human crafting. The current
process can take weeks or even months, subjecting patients
to significant risks of deadly aneurysm rupture. Autonomous
manufacturing for custom-made stent grafts therefore provides
tremendous potential and is an unmet clinical demand.

The production of personalized stent grafts is service-
oriented: custom-designed products are based on customer
demands. To this end, the proposed robotic system incorpo-
rates personalization, learning, and adaptation combined with
real-time vision. It leverages the latest additive manufacturing
processes to make patient-specific models. To reduce the
cost associated with manufacturing customized products, we
adopted a modular design to separate the repetitive tasks from
the personalized tasks. The entire process is monitored under
a real time vision system for multi-robot coordination.

II. RELATED WORK

Research into automated personalized manufacturing has
received extensive interest in recent years. Most studies focus
on the high level design of the system, such as incorporating
wireless networks and cloud computing in factories [4], using
big data for product modelling and customization [5], and
automating the supply network [6]. Less studied is how to
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Fig. 2: The modularized multi-robot system for stent grafts sewing.

automate a production cell/line to produce customized prod-
ucts [7].

Extensive research on automated sewing has also been
performed in the textile industry. Most of the existing research
has been focused on augmenting the capability and intelligence
of conventional sewing machines. Relevant topics in this field
include multi-arm robotic sewing [8], tension control for
fabric, and edge tracking [9]. To cope with environmental
changes during sewing, various control strategies have been
implemented, such as fuzzy logic controllers [10], hybrid
position/force control [8], and leader/follower control strate-
gies [11]. Research has also been carried out on the redesign of
sewing machines that are capable of sewing from a single side
of the fabric and therefore facilitate sewing on complex 3D
surfaces. For example, KSL Keilmann (Lorsch, Germany) has
developed different single sided sewing heads for 3D sewing
fabric-reinforced structures for aircraft parts. These sewing
systems, however, are designed to sew large and heavy objects.
Single sided sewing of delicate objects remains a challenging
problem.

Medical devices such as stent grafts demand personalization
and creating products based on the customers’ specifications is
the main motivation of Industry 4.0. In this paper, we propose
a solution for a high-value medical device manufacturing
challenge: how to enable robots to produce a variety of
customized products with low costs. The proposed system uses
personalized stent graft sewing as the exemplar to demonstrate
a solution. This work focuses on the task that is most chal-
lenging to automate: sewing the stents on the fabric. This
task involves dexterous manipulation of the needle, fabric,
and thread. The personalized stent graft is currently hand-
crafted with manually sewn stents (Fig. 1). Despite the speed
of conventional sewing machines, they lack the ability to adapt
to different free-form 3D geometries.

As bimanual sewing involves intricate coordinated motions,
we have adopted a learning by demonstration approach. Ex-
isting learning by human demonstration methods range from
the simple âĂIJrecord-and-replayâĂİ method to more sophis-
ticated approaches of incorporating visual servoing to cater
for positional variation and different poses of grasping [12].
However, these approaches are mainly used to demonstrate
tasks for a single robot arm. Demonstration of a bimanual

(a) (b) (c)

Fig. 3: Three stages of designing a personalized stent graft. (a) The
patient’s CT scan. (b) A 3D reconstruction of the patient’s AAA. (c)
A sketch of the patient specific designed stent graft. The numbers are
in mm. The dotted curve represents the location of one of the stent
rings and the crosses represent the locations of stitches for the stent.

task is difficult to achieve by a single user. Delicate bimanual
tasks such as sewing and surgical suturing are largely demon-
strated via tele-operation [13], which requires an extra master-
slave system. We propose herewith an efficient demonstration
method to program the sewing motion via a vision system. The
merits of this method are twofold: 1) users can demonstrate
the task accurately and intuitively with their own hands rather
than via the control panel or via kinaesthetic teaching and 2)
the demonstration does not require the robots and hence can
be done without interrupting the current robotic production
process (detailed in Section III-B).

However, the effectiveness of vision-based manipulation
also relies on the accuracy of tool tracking and detection [14].
In medical suturing, small objects such as needles are difficult
to track by camera. To this end, Iyer et al. [15] proposed
a single-camera system for auto-suturing with a monocular
pose measurement algorithm [16]. A 3D stereo system was
proposed [17] to improve the accuracy of aligning the needle
with the target stitching point. The “look-and-move” visual
servoing method [18] can be used to increase task accuracy
and compensates the kinematic errors of the robots. In this
paper, we present a robust needle detection algorithm. Fig. 2
illustrates the major components of the proposed manufactur-
ing system. The main contributions of this work include:

1) A modular multi-robot system that enables flexible pro-
duction of customized medical devices;

2) A novel hardware design (mandrel) to cater for person-
alized product design;

3) An easy-to-use method for users to demonstrate intricate
bimanual tasks;

4) A vision-based system for communication between mul-
tiple robots and visual servoing.

III. OVERVIEW

The multi-robot sewing system is designed with a modular
scheme. As shown in Fig. 2, our proposed system is composed
of three modules: the bimanual sewing module (Kuka Robots
A, B, Needle Drivers A, B), the personalized mandrel module
(Robot C, Force sensor1, Mandrel, Fabric), and the vision
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module (stereo camera). The sewing task is hence separated
into two parts: bimanual sewing and handling the personalized
mandrel. The bimanual sewing motion is learned by observ-
ing human demonstrations (Section III-B) while the mandrel
motion is computed according to the patient-specific design
(Section III-A). The three robots are coordinated via the vision
module (Section III-C).

With this modular design, we encapsulate the customized
components of the system into a single module, i.e. the
mandrel module. The mandrel determines not only the patient
specific geometry but also the exact position of each stitch.
When sewing a new stent graft design, only the mandrel
module needs to be reconfigured whilst all other modules
remain the same. Hence, the cost of reconfiguring the system
for customization is minimized.

Specifically, the role of each module is listed as below:
1) Mandrel module

a) Personalized trajectory planning
b) Handling the stents and fabric
c) Monitoring thread tension

2) Bimanual sewing module
a) Learning and reproducing human hand sewing
b) Real time adaptation

3) Vision module
a) Watching and recording user demonstrations of

bimanual sewing
b) Coordinating robots, tracking, and visual servoing
c) Detecting the needle pose

A. Mandrel Module

The key to the personalization of a stent graft is the
3D printed patient specific mandrel. A mandrel is a hollow
cylinder (or cylinder-like shape) to support the fabric and the
stents. Fig. 4a shows a basic mandrel. This mandrel serves two
important roles during the manufacturing process: 1) tightly
binding the stents and the fabric together and 2) enabling the
robots to sew in the correct locations.

The shape of the mandrel is customized together with the
stent graft to fit to each patient’s anatomy. Fig. 3 illustrates the
three stages of designing a stent graft and the corresponding
mandrel. Starting from the patient’s CT/MR scan images
(Fig. 3a), the 3D geometry of the aorta and the aneurysm
is reconstructed (Fig. 3b). A stent graft is hence designed
based on this 3D model and the mandrel is designed to be
in the same shape, with grooves arranged for positioning
the stents and sewing slots for needle piercing. The design
specification and the CAD model are stored in a shared
repository. This information can be retrieved, for example, via
a radio-frequency identification (RFID) tag attached to the 3D
printed mandrel (Fig. 2).

Prior to sewing, the mandrel, which is wrapped with the
graft fabric and stents, is affixed to a 3D printed adaptor
(Fig. 2). This adaptor is an octagonal prism with a vision-based
marker attached to each face. The pose of the mandrel is com-
puted by detecting the pose of these markers (Section III-C). A
force sensor for monitoring the thread tension (Section IV) is

(a) Design of a mandrel (b) Design of a needle driver

Fig. 4: (a) The mandrel. The stitching slots allow the needle to sew
and the grooves are for fixing the stents. (b) The motorised needle
driver. It is designed to be attached to the Kuka robot and has a DC
motor that opens and closes it.

affixed to the other side of the adaptor. This mandrel-adaptor-
force sensor setup is then mounted to the robot end-effector.
Installing a new mandrel is relatively simple and takes two
minutes on average.

The mandrel movement controlled by Robot C is computed
according to the mandrel’s design, i.e., the location of each
stitching slot. After the mandrel design is retrieved, Robot
C plans its motion trajectory automatically and delivers the
first stitching slot to the initial location to start sewing. Upon
completion of each stitch, Robot C moves the mandrel to
allow the bimanual sewing module to access the next stitching
slot easily. In this way, the system is adaptable to different
personalized stent graft designs and the customization is
achieved by simply changing the mandrel.

B. Bimanual Sewing Module

The bimanual sewing module manages the key motion
element: sewing. Hand sewing is a laborious job requiring
fine manipulation skills. Although there exists a large variety
of specialized sewing machines, many hand-sewing tasks are
difficult to automate. To this end, we have adopted a learning
by human demonstration approach to simplify the task.

Intricate hand motion was first demonstrated by a user
and then segmented into multiple motion primitives (Sec-
tion III-B1), each encoded with a statistical model (Sec-
tion III-B2). These models were then implemented to allow
the robot to reproduce the same stitches (Section III-B3). The
demonstrations were observed by the vision system and the
learned reference trajectory was later reproduced under vision
guidance and servoing. This approach is generic to position-
based bimanual tasks and hence is applicable to similar flexible
production lines/cells.

Two robot arms (Kuka Robots A and B) mounted with two
end effectors (Needle Driver A and B, as shown in Fig. 4b)2

and a curved needle were used for bimanual sewing. This is
a typical bimanual manipulation system and the target object
is the needle. In subsequent sections, we refer to the needle
as the object, and the needle drivers as the tool. Here we
use an âĂIJobject centricâĂİ approach: the human skill is

2These are surgical needle drivers that are specially designed to grip the
needle firmly. They are motorized to allow the robots to open and close them.
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(a) (b) (c) (d) (e) (f)

Fig. 5: The key steps involved in one stitch cycle (a-f), of which at the end the needle is passed back to Needle Driver A for the next cycle.

TABLE I: Motion primitives of stitching

Motion
Primitives

Steps in
Fig. 5

Needle Driver
A status

Needle Driver
B status

Needle
status

1. a, b Closed Open With A

2. c Closed Closed With A

3. d,e Open Closed With B

4. f Closed Closed With B

5. a Closed Open With A

represented by the motion of the tools and the objects. During
demonstration, the user controls the tools to manipulate the
object. The motion of the tools and object, rather than the
human hands, is recorded and learned. In task reproduction,
the robots use the same tools to manipulate the same object.
In this way, the human manipulation skills can be easily
transferred to robots without the need of mapping the human
motion to the robots.

1) Data Acquisition: The user demonstrates the task by
using two needle drivers, with a bar-code marker mounted on
each for visual tracking. The vision module was mounted on
top of the workspace to record the 6 d.o.f poses of the needle
drivers. The sewing was performed on a pre-installed mandrel.

Sewing is a repetitive task and Fig. 5 shows the main steps
of a single stitch cycle. A surgical 1/2 circular needle was used,
of which the trajectory was computed according to the pose
of the needle drivers (Section III-C2). When a needle driver
was holding the needle, the trajectories of both the needle and
the needle driver were recorded in the reference frame of the
mandrel; when the needle driver was not holding the needle,
only its own trajectory was recorded in the reference frame
of the needle. Needle pose estimation was performed at the
beginning of each stitching cycle. The user demonstrated the
stitching process to the system multiple times to generate the
training data.

2) Task Learning: After low-pass filtering of the raw data,
each demonstration was segmented to a series of motion prim-
itives, according to the needle drivers’ open and closed status
and their attachment to the needle. These motion primitives are
listed in Table I. Dynamic Time Warping was then applied [19]
to each primitive to temporally align all the trials.

Each motion primitive was encoded by a 7D Gaussian
Mixture Model (GMM) Ω and formed a motion primitive [20],
[21]. The time stamp t and the 6 d.o.f pose h = {x, y, z, α, β, θ}
were encoded. The probability that a given point t, h belongs
to Ω is computed as the sum of the weighted probability of
the point belonging to each Gaussian component Ωk :

p (t, h | Ω) =
K∑
k=1

πkpk (t, h | µk,Σk) (1)

where πk , pk are the prior and corresponding conditional
probability density of the k-th Gaussian component (Ωk), with
µk and Σk as mean and covariance. More specifically, the mean
µk and the covariance Σk are defined as:

µk =
©«
µt,k

µh,k

ª®¬ Σk =
©«
Σtt,k Σth,k

Σht,k Σhh,k

ª®¬ (2)

To determine the number of Gaussian components K , a five-
fold cross validation was used.

The reference trajectory of each motion primitive was re-
trieved via GMR by querying the mean µ̂h and the covariance
Σ̂hh of the pose at each time step t̂:

µ̂h =

K∑
k=1

βk
(
t̂
)
µ̂h,k Σ̂hh =

K∑
k=1

βk
(
t̂
)2
Σ̂hh,k (3)

where

µ̂h,k = µh,k +Σht,k(Σtt,k)
−1(t̂ − µt,k) (4)

Σ̂hh,k = Σhh,k −Σht,k(Σtt,k)
−1
Σth,k (5)

and

βk
(
t̂
)
=

πkp(t̂ |µt,k,Σtt,k)∑K
k=1 πkp(t̂ |µt,k,Σtt,k)

(6)

3) Trajectory Optimisation for Task Contexts: The learned
reference trajectory needs to be further optimized to maximize
the task performance in terms of both accuracy and speed. We
achieved this by varying the speed of the task reproduction in
different task contexts. Generally, a manipulation task has two
task contexts: end point driven and contact driven.

In the bimanual sewing task, the approaching and exiting
motion of the needle to the fabric is end-point driven, while
the piercing in and out motion belongs to the contact driven
context. To ensure stitch quality, the needle piercing in and out
motion must follow the reference trajectory accurately. Hence
in this context, the robot is slowed down to allow it to follow
the reference trajectory carefully. For end-point driven motion,
however, the robot does not need to follow the exact trajectory,
as long as it reaches the final destination.

To identify the task context, the variance between different
demonstrations in each motion primitive was analyzed. As
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shown in Fig. 9, the variance of the demonstrations varies
across the task. Those parts with large variance were identified
as end point driven, while those with small variance were
identified as contact driven.

According to the bimanual sewing task requirement, we
chose the correlation of the variance and the ratio to the
demonstration speed R as:

R =


0.5, vart > 0.01 or varr > 15
1.5 vart ∈ [0.005,0.01] or

varr ∈ [5,15]
2 vart < 0.005 or varr < 5

where vart and varr are the variance of the translation in
meters and the rotation in degrees, respectively.

C. Vision Module

This module plays the role of coordinating the motions of
multiple robots. All robots are registered to the stereo camera
and move according to the task progress.

1) Detection and Tracking for Continuous Tool Pose Es-
timation: In this work, we have applied a visual tracking
and pose estimation scheme similar to [22]. Bar-code markers
with known geometrical characteristics were attached on each
tool. A pentagonal adapter was used to ensure that the marker
can be observed by the stereo cameras during manipulation
(Fig. 6).

We used the marker detection algorithm in ArUco [23],
combined with an optical flow based tracker in [24]. It is
worth mentioning at this point the forward-backward error
identification component that we included for tracking. We
used the location of a marker in the previous frame to initialize
a set of corner points. These points {qi}Mi=1 (belonging to the
marker) were tracked “forward” from the previous to current
frame, to obtain their estimated current locations

{
q+i

}M
i=1. In

addition, “backward” tracking was also performed from the
current to the previous frame, to obtain

{
q−i

}M
i=1.

The assumption used here is that if these points have been
tracked accurately from the previous to the current frame, the
backward tracking would return to the original locations of
these points. With this, we used the Euclidean measure to
determine if a point estimate is valid, and we compared the
measure with a threshold τ (defined as 1px). All the accepted
points are treated as inliers, which are then used to estimate
the 6 d.o.f pose of the marker using perspective-n-points [25].
Hence, our pose estimation approach has the advantage of
continuous pose estimation by combining visual detection and
tracking which was applied to every marker on the adapter.

2) Needle Detection: After being handed over twice in
one stitching cycle, i.e., from Needle Driver A to B and
then back to A, the needle may deviate from its initial pose
relative to Needle Driver A. Although the change for each
cycle may be small, it can accumulate to a large deviation
from the initial needle pose, and cause task failure. Therefore,
the robot motion needs to change adaptively according to the
needle pose and to move the needle along its learned reference
trajectory. To this end, the pose is estimated by performing a
constrained 2D/3D rigid registration using features calculated

(a) (b)

Fig. 6: (a) Curved needle for sewing (b) A 2D illustration of the
needle search space (yellow area). This search space is 4D and is
restricted to ± 5 mm for the x translation, ±10 degrees along x, ±60
degrees along y, ±30 degrees along z.

in the image and a sparse representation of the 3D model of
the needle, i.e., a set of 3D points along the needle shaft.

This can be represented as a constrained 2D/3D rigid
registration problem. For this purpose, the transformation that
describes the pose of the needle is applied to its 3D model.
The resulting 3D points are then projected onto the image
using the camera’s parameters3. Restricted by the jaws of the
needle driver, the pose of the needle was represented in 4D:
a translational movement along the jaws and the 3D rotation.
For each plausible needle pose, the sum of the feature strength
for the projected 3D model points is calculated (Fig. 6).
Finally, the pose that is characterized by the highest overall
feature score is regarded as the pose of the needle. Due to
the elongated shape of the needle, an image feature that has
a strong response to lines and curvilinear objects [26] was
used. How the robot adapts its motion to the needle pose is
explained in the next section.

3) Visual Servoing: A closed loop vision-based feedback
system was deployed to guide the robot motions. In a multi-
robot system, it is important to coordinate all the robots to
work under the same frame of reference with the same pace.
Calibrating multiple robots is time-consuming, especially for
tasks such as sewing or surgical tasks requiring high precision.
To this end, we applied a 3D visual servoing technique to
ease the requirement of the accuracy of this calibration. With
online visual feedback, the error of the robot reproducing the
reference trajectory is independent of the calibration and the
robot kinematic precision [18].

In our sewing system, multiple reference frames are in-
volved: camera (c), mandrel (m), stitching slots (s), needle
(n), needle driver (d), robot base (r) and the robot end effector
(ee). Here, we denote •b a as the homogeneous matrix of the
pose of the object a in the frame of the object b. Further, we
use xb a to denote a pose that changes along the robot motion,
and Hb a to denote the relative pose between a and b, which
is a constant or independent of robot motion.

Prior to the task demonstration, the mandrel was registered
to the end effector frame of Robot C, and each stitching
slot was registered to the mandrel ( Hm

s ) according to the
mandrel’s design. Each personalized mandrel requires new
registration. The poses of the needle drivers (A, B) in the
robots’ (A,B) end effector frame were also computed. All

3The camera’s parameters are estimated during an offline calibration phase.
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robots were registered to the frame of the camera ( Hc r ). This
was achieved by hand-eye calibration4.

For both the mandrel and the bimanual module, we adopted
the “look-and-move” servoing method to control the robot
movements. In this method, a robot is programmed to move
to minimize the error between the current pose and the target
pose of the observable objects, e.g. the markers on the mandrel
and on the needle drivers. The location of the stitching slot
used for demonstration (s0) in the camera frame (c) was firstly
registered to the camera by:

xc s0 = xc m · Hm
s0 (7)

Hence, for the mandrel to deliver the i− th stitching slot to
the same location, the error in pose was computed as:

xm
mi
=

(
xc m

)−1
· xc s0 ·

(
Hm
si

)−1 (8)

This then can be transformed to find the error of Robot
C end-effector by Hee

m . Hence we generate commands for
Robot C to move the mandrel to the target pose. Note different
mandrels will have different values of Hm

si
.

The same principle was applied to control the bimanual
sewing module. Taking Motion Primitive 1 as an example,
the aim is to move the needle towards the stitching location
and pierce the fabric. Hence the reference trajectory was
represented as a series of needle poses in the frame of the
stitching slot ( xs n ). The needle pose was transferred to the
needle driver pose by:

xs d = xs n ·

(
Hd n

)−1
(9)

where Hd n is the relative pose between the needle (n) and
needle driver (d), detected over the task as explained in
Section III-C2. With different needle poses, the robot will
adapt its trajectory to ensure the xs n remains the same, i.e.
to produce the same stitch.

Similar to the mandrel module, the error between the current
needle driver pose (d) and the desired needle driver pose (d∗)
was computed as:

xd d∗ =
(

xc d

)−1
· xc si

· xs0
d∗

(10)

This, again, can be converted to find the error of the robot
end-effector and to control the robot to move to the desired
location.

The frame rate of the camera is 20 fps and hence is the
control rate of visual servoing. To increase the stability of
visual servoing and to compensate for the latency of the
cameras, a Double Rate Kalman Filter was applied to the
estimation result of the mandrel and needle driver poses, as
explained in our previous work [27].

IV. EXPERIMENTS AND RESULTS

Two tasks were implemented to evaluate the performance
(accuracy and the robustness) of the proposed system: 1)

4From Matlab: https://uk.mathworks.com/matlabcentral/fileexchange/22422-
absolute-orientation

TABLE II: Qualitative results of needle puncture task. Trials 1, 3 and
4 have no observable errors (denoted by -).

θx θy θz X ErrorNeedle
pose (degrees) (degrees) (degrees) (mm) (mm)

1 -1.00 0 8.51 -1 -

2 0.41 -9.39 -0.12 0 1.63

3 0.12 -0.99 1.50 -2 -

4 1.17 6.49 10.0 1 -

5 -2.88 21.00 7.43 -2 0.5

6 -2.00 6.00 13.53 -3 0.8

a needle puncture task and 2) the autonomous sewing of
personalized stent grafts.

A. Needle Puncture Task

The needle detection and the visual servoing algorithm were
evaluated with a puncture task: teaching the robot to puncture
a fixed point on a fabric with a needle. This motion was
demonstrated by a user using a needle driver to grip and move
the needle. At the beginning of the motion, the needle was
placed away from the fabric and the needle pose was estimated
by the algorithm presented in Section III-C2. The user moved
the needle to approach the fabric and to pierce the fabric at
a given location. The motion trajectory of the needle driver
was recorded by the vision system (resolution: 640×480). The
robot then learned to reproduce the trajectory and puncture
the fabric at the same location. The locations of the puncture
points in different trials were recorded. These demonstrations
were performed using a 1/2 circular needle with 8mm diameter
(Fig. 6), of which the model has 10 evenly distributed points
along the arc.

Six experiments were conducted and at each trial, the needle
pose varied as shown in Fig. 7. After needle pose estimation,
the robot adapted its motion trajectory to deliver the needle
to pierce at the same point. The motion was reproduced
at a third of the speed of human demonstration. The error
of each experiment was computed as the distance of the
repeated puncture points with respect to the original puncture
point. This error reflects the overall accuracy of the entire
vision module, including the needle detection algorithm, tool
tracking, and the visual servoing method.

As shown in Table II, in half of the trials the robot pierced
at the same point as demonstrated. The average error across
the six trials was 0.48 mm. Trial 2 resulted in a larger error
(1.63 mm) as during the motion, the robot arm approached its
joint limit and hence could only reach the adjacent point. This
result shows that the accuracy of the vision module allows for
high precision sewing for the stent grafts. The accuracy can
be improved significantly by using a higher resolution stereo
vision system [28].

B. Autonomous Sewing of Personalized Stent Grafts

To evaluate the performance of the proposed multi-robot
sewing system, four experiments were conducted. These stents
were different in designs and sizes (Fig. 8). These sizes were
chosen from the personalized sizes available from current stent
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(a) Trial 1 (b) Trial 2 (c) Trial 3 (d) Trial 4 (e) Trial 5 (f) Trial 6

Fig. 7: Experiment 1 results for the needle puncture task with six different initial needle positions. Top row: Results of needle 3D pose
detection. The detected needle 3D poses are projected to 2D and represented by the green lines. The red dots mark the end of the detected
needle. The pose of the needle driver is detected by the marker, denoted by the frame. Middle row: The robot adaptation of the needle poses
during the puncture task execution. Bottom row: At the end of the task, the needle punctured the fabric.

graft manufacturers. The fabric was Dacron and the stent rings
were medical stainless steel.

According to the design of these stents, their corresponding
mandrels were 3D printed. On each mandrel, 10 × 2mm
stitching slots were created5, located at the peaks of the stents
and at the middle point between the peaks. Before sewing,
the fabric tube and the stent were manually loaded onto the
mandrel and the whole device was mounted on Robot C.

The robotic sewing system is shown in Fig. 2. All three
7 d.o.f robots were registered to the vision module mounted
on top of the workspace by hand eye calibration. Bimanual
sewing was demonstrated to the system five time on the same
slot of Stent A by the user. The location of this slot was
recorded. The average demonstrated stitch size was 4.10 mm.
Before each stitch, the needle pose was detected such that
the needle pathways can be computed by the needle driver
trajectory.

The human demonstration motion primitives are shown in
Fig. 9. Note we have omitted in the figure the trajectories of
Needle Driver A in Primitives 2,3 and the Needle Driver B
in Primitives 1,4,5 as they are nearly static. As presented at
the bottom row, the variance of each motion primitive varies
across different stages.

For example, in Primitive 1 the motion variance of Needle
Driver A is large at the beginning, i.e., approaching the fabric,
and rapidly reduces, i.e. piercing fabric. This suggests that
piercing motions were highly similar among all demonstra-
tions and thus required to be followed precisely. For the same
reason, in Primitives 2 and 3, the variance of the Needle Driver
B motion is large when approaching or leaving the fabric,
and small when piercing out the needle. Primitives 4 and 5
are shown in the needle frame. According to the variance,

5Currently the smallest diameter of the mandrel we used was 3 cm as
limited by the rigidity of the 3D printing material. This can be made smaller
if different printing material is used. In any case, most stent grafts for AAA
have diameter larger than 3 cm.

(a) A (b) B (c) C (d) D

Fig. 8: Stent grafts in different designs. From left to right, the outer
diameters are: 4.4cm, 4cm, 3cm, 3cm.

Needle Driver A gripped the same place on the needle for
every demonstration.

In short, for the interactive parts of the task, i.e. needle
piercing in/out of the fabric and needle handing over, the
variance of the motion is small and hence we slow down the
robot for these parts to ensure precision. For the other parts
we increase the velocity of the robot to maintain the speed of
sewing.

The learned reference trajectories were registered to the
mandrel’s frame via its stitching slots. As mentioned in
Section III-C, the mandrel’s pose was detected according to
the fixed markers on the adapter. At the end of each stitch
cycle, Robot C would rotate and translate the mandrel to the
desired location to allow for easy access to the next stitching
slot. The motion of Robot C was planned offline for each
personalised stent graft.

Before the bimanual sewing module performed each stitch,
the reference trajectory was adapted according to the detected
needle pose. After finishing a stitch, Robot A was programmed
manually to tighten the stitch. This pulling motion was stopped
when the force sensor reading went above a predefined thresh-
old value. When a stitch failed, the system was restored to the
initial state of the stitching cycle and the sewing was restarted.

In total 124 stitches were made with an overall success
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(a) Primitive 1 (in frame
of mandrel)

(b) Primitive 2 (in frame
of mandrel)

(c) Primitive 3 (in frame
of mandrel)

(d) Primitive 4 (in frame
of needle)

(e) Primitive 5 (in frame
of needle’s initial pose)
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(f) Needle Driver A mo-
tion (15 seconds)
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(g) Needle Driver B mo-
tion (6 seconds)
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(h) Needle Driver B mo-
tion (8 seconds)
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(i) Needle Driver A mo-
tion (4 seconds)
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(j) Needle Driver A mo-
tion (8 seconds)

Fig. 9: The needle drivers trajectories from human demonstrations and the learned reference trajectories of each motion primitive. (a)-(e): Five
human demonstrations of bimanual sewing. Different colors represent different trials. The grey cylinder in (a)(b)(c) represents the mandrel.
The grey arc in (d)(e) represents the needle. (f)-(j): 2D projection of the motion primitives on the x-axis. Green lines represent the reference
trajectories, and the grey area represent the corresponding variances.

Needle 
Driver A 

Needle 
Driver B 

(a) Primitive 1 (b) Primitive 2 (c) Primitive 3 (d) Primitive 4 (e) Primitive 5

Needle 
Driver A 

Needle 
Driver B 

(f) Primitive 1 (g) Primitive 2 (h) Primitive 3 (i) Primitive 4 (j) Primitive 5

Fig. 10: Key frames of bimanual sewing in each motion primitive. (a)-(e) The view from the top camera, used for visual servoing. (f)-(j)
The corresponding views from the side.
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Fig. 11: Experiment results of sewing stent graft A (blue:1-18), B (red: 19-46) and C (green: 47-64). In total 64 trials have been taken and
the success rate is 77% with mean stitch size 3.93 mm and variance 0.77 mm. Trials with no stitch size denote failed stitches.
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Fig. 12: Experiment results of sewing stent graft D. In total 60 trials have been taken and the success rate is 82% with mean stitch size 3.46
mm and variance 0.44 mm. Trials with no stitch size denote failed stitches.

rate of 79% and the average stitch size was 3.60 mm with
a variance of 0.89mm. The size of each stitch is reported in
Fig. 11 and Fig. 12. We identified four possible causes of a
failed stitch: 1) needle handling failure (stent and trial A4,
A7, A8, B36, B43, B45, D7, D14, D35, D49); 2) stitch-stent
missing failure (A15, A16, B31, C49, C51, D11, D31, D32); 3)
needle-stent touching failure (B24, B25, D26, D53); 4) needle-
thread entangling failure (B22, C51, D1, D18). The first three
causes were mainly due to errors in the needle detection and
visual servoing, while the fourth was caused by the lack of
thread shape control.

This experiment shows the proposed system can sew differ-
ent stent graft designs effectively. The success rate of 79% can
be improved by using higher resolution cameras. Advanced
design of the needle driver and mandrel will also improve
the system performance. For example, currently the maximum
opening of a needle driver is 4 mm. The motorization design
can be modified to allow the needle drivers to open wider and
hence have higher tolerance of the position error of the needle.

The variance of the stitch size is mainly caused by the slack
of the fabric at the stitching slots. A small deformation of the
fabric can result in a large difference in the stitch size. This can
be improved by using a collapsible mandrel. A mandrel with
slightly larger diameter will bind the fabric tighter and further
reduce the deformation. Such a mandrel requires a collapsible
design so that it can be inserted into the fabric tube easily. In
this work, explicit control of thread shape is not yet considered
but this would further enhance the reliability of our system.

V. DISCUSSION AND CONCLUSION

In this paper, we have proposed a robotic system for
manufacturing personalized stent grafts for AAA. Compared to
other consumer goods, medical devices have a higher demand
of service-orientation and customization. We have explored
a practical solution for flexible production of personalized
medical products at the system level. The modularized de-
sign increases the flexibility of the system and reduces the
complexity of the task. For sewing different stent grafts, only
the mandrel is required to be changed. This system can also
be extended to other manufacturing tasks.

Experiments were conducted to evaluate the entire system in
terms of its accuracy and robustness for sewing personalized

stent grafts. The experiments showed that this system presents
sub-millimeter accuracy of positioning and for multiple throw
sewing, it is able to achieve 79% of overall success. The
targeted stitch size was 4.10 mm and the system achieves an
average stitch size of 3.60 mm.

In summary, the proposed system demonstrates a good
potential for practical use and its performance can be improved
by various approaches. The focus of the future work will be to
further increase the accuracy and robustness of the system. We
will also further explore the flexibility of this system in sewing
more complex stent grafts with fenestrations and branches.
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