610 research outputs found

    Dynamical signature of fractionalization at a deconfined quantum critical point

    Get PDF
    Deconfined quantum critical points govern continuous quantum phase transitions at which fractionalized (deconfined) degrees of freedom emerge. Here we study dynamical signatures of the fractionalized excitations in a quantum magnet (the easy-plane J-Q model) that realize a deconfined quantum critical point with emergent O(4) symmetry. By means of large-scale quantum Monte Carlo simulations and stochastic analytic continuation of imaginary-time correlation functions, we obtain the dynamic spin-structure factors in the S x and S z channels. In both channels, we observe broad continua that originate from the deconfined excitations. We further identify several distinct spectral features of the deconfined quantum critical point, including the lower edge of the continuum and its form factor on moving through the Brillouin zone. We provide field-theoretical and lattice model calculations that explain the overall shapes of the computed spectra, which highlight the importance of interactions and gauge fluctuations to explain the spectral-weight distribution. We make further comparisons with the conventional Landau O(2) transition in a different quantum magnet, at which no signatures of fractionalization are observed. The distinctive spectral signatures of the deconfined quantum critical point suggest the feasibility of its experimental detection in neutron scattering and nuclear magnetic resonance experiments.First author draf

    Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    Get PDF
    Abstract-- An increased research on electric vehicles (EV) andplug-in hybrid electric vehicles (PHEV) deals with their flexibleuse in electric power grids. Several research projects on smartgrids and electric mobility are now looking into realistic modelsrepresenting the behavior of an EV during charging, includingnonlinearities. In this work, modeling, simulation and testing ofthe demand profile of a battery-EV are conducted. Realistic workconditions for a lithium-ion EV battery and battery charger areconsidered as the base for the modeling. Simulation results showthat EV charging generates different demand profiles into thegrid, depending on the applied charging option. Moreover, alinear region for the control of EV chargers is identified in therange of 20-90% state-of-charge (SOC). Experiments validate theproposed model.Index Terms - charging, demand profile, electric vehicles,modeling, validation7 halama

    N-[(R)-(2-Chloro­phen­yl)(cyclo­pent­yl)meth­yl]-N-[(R)-(2-hydr­oxy-5-methyl­phen­yl)(phen­yl)meth­yl]acetamide

    Get PDF
    In the title compound, C28H30ClNO2, the cyclo­pentane ring adopts an envelope conformation. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds, forming chains running along the a axis

    (meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene)nickel(II) bis­[O,O′-bis(4-methyl­phen­yl) dithio­phosphate]

    Get PDF
    In the title compound, [Ni(C16H32N4)](C14H14O2PS2)2 or [Ni(trans[14]dien)][S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene, the NiII ion lies across a centre of inversion and is four-coordinated in a relatively undistorted square-planar arrangement by the four N atoms of the macrocyclic ligand trans[14]dien. The two O,O′-di(4-methyl­phen­yl)dithio­phos­phates act as counter-ions to balance the charge. Important geometric data include Ni—N = 1.9135 (16) and 1.9364 (15) Å

    2,4-Dichloro-6-((1R)-1-{[(R)-(2-chloro­phen­yl)(cyclo­pent­yl)meth­yl]amino}eth­yl)phenol

    Get PDF
    In the title compound, C20H22Cl3NO, the five-membered ring adopts an envelope conformation, and the two benzene rings are oriented at a dihedral angle of 40.44 (9)°. Intra­molecular O—H⋯N and N—H⋯Cl hydrogen bonding is present. In the crystal, the mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds
    corecore