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Abstract

Lung cancer leads to high mortalities in various countries while the reliability of

cancer diagnosis has not been paid enough attention. In this work, a novel ap-

plication of conformal prediction in lung cancer diagnosis with electronic nose is

introduced. The nonconformity measurement is based on k-nearest neighbors.

In offline prediction, accuracies of 87.5% and 83.33% have been achieved by

conformal predictors based on 1NN and 3NN respectively, outperforming those

of simple k-nearest neighbor predictors. Additionally, conformal predictors pro-

vides confidence and credibility information of each prediction that could inform

the patients of diagnostic risks. In online prediction, with increasing number of

samples, the frequency of errors given by conformal predictions can gradually

be limited by the significance level set by users. This project manifests that

electronic nose promises to be an applicable cheaper analytic tool in assisting

lung cancer diagnosis and conformal prediction provides a promising method to

ensure reliability.
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prediction, reliability

1. Introduction

Lung cancer has gradually become one of the most fatal diseases which

contributes to huge mortalities in various nations [1, 2, 3, 4, 5]. The diagnosis

of lung cancer is usually in its terminal stages and the five-year survival rate

is quite low. Earlier diagnosis can improve the survival rate to a great extent5

[6, 7].

Scientists has already applied various methods to diagnose lung cancer in

an earlier state [8, 9, 10, 11] based on biopsy. For instance, Tan used support

vector machine to analyze the gene expression statistics, and reached a classi-

fication accuracy of 96.61% [11]. However, biopsy, as the state-of-art and most10

reliable diagnostic technique, may do harm to patients and could not be ap-

plied frequently in a short period of time. Computed Tomography(CT) offers

a frequently used non-invasive method that could help early detection but with

the disadavantages of high cost, ionizing radiation and false positive results.

Therefore, a cheaper, more convenient, radiationless and non-invasive diagnos-15

tic method for lung cancer is much in need.

Breath air, as a product of metabolism containing volatile organic com-

pound(VOC), serves as an indicator of human health. Using breath air to

diagnose such disease as lung cancer has been a research spot [12, 13, 14].

For instance, some scholars applied gas chromatography(GC) and mass spec-20

troscopy(MS) to find out patterns associated with lung cancer[15, 16]. Never-

theless, GC-MS is quite expensive, complicated and time-consuming for wide-

spread applications. Electronic nose is an artificial olfaction system capable of

analyzing volatile gas mixture with sensors sensitive to different VOCs [17, 18,

19, 20]. As a low-cost, relatively compact analytic tool, electronic nose has been25

applied to many domains such as air environment quality evaluations [21, 22, 23],

assistant medical diagnosis [24, 25, 26, 27] and food and beverage quality tests

[28, 29, 30, 31, 32, 33, 34]. The application of electronic nose in lung cancer
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diagnosis promises a cheaper and more convenient assistant diagnostic method

without invasion and radiation.30

In addition, what has been frequently ignored in lung cancer diagnosis is the

prediction reliability and overall accuracy. Diagnostic misinterpretation and er-

roneous prediction may exert tremendous psychological and financial burdens

on patients and their families. Therefore, lung cancer diagnosis should not only

provide prediction results but also confidence associated with each prediction, to35

help doctors to make the best decisions and provide patients with effective infor-

mation about risks. To solve the problem of reliability of each prediction and the

accuracy of overall predictions, such methods as probably approximately cor-

rect learning(PAC), Bayesian learning, hold-out validation and cross validation

have been put forwards by scholars. However, PAC generally requires a large40

number of samples and does not offer specific information on the reliability of

individual prediction [35]. Bayesian learning, logistic regression [36] and Platts

method [37] provides additional probabilistic information about reliability for

each prediction. For instance, before outputting a label to an observation, logis-

tic regression and Bayesian methods give out conditional probability given the45

features. Some of these methods rely on distribution assumption or model as-

sumption. For instance, linear discriminant analysis and quadratic discriminant

analysis, two Bayesian methods, rely on normal distribution with the same or

different covariance in different classes and employ maximum likelihood to eval-

uate distribution parameters. Others rely on the data to calculate priori to infer50

the true conditional distribution of each class. Due to sensor drifts, measure-

ment noises and collinearity among features, the distribution assumptions and

model assumptions may not be proper. Meanwhile, the small research training

set in biomedical researches are usually biased in classes. The frequency of the

disease cases may not be an accurate estimate of the prior probability. There-55

fore, the models and reliability may not be robust enough with the process of

seeking for prior information. In addition, such methods as hold-out validation

and cross-validation often predict overoptimistically in reality in that responses

given by electronic noses may be influenced by sensor drifts, sensor aging or
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sensor poisoning.60

Conformal prediction, which is based on the assumption that all samples

and their associate labels are generated from an independent and identical dis-

tribution (IID), was firstly put forward by Vladimir Vovk. and his co-workers

[35, 36, 38, 39]. Based on a weaker assumption when compared with meth-

ods mentioned above, when applied to the actual data from electronic nose,65

it can provide a promising method for the evaluation of prediction reliability.

Conformal prediction not only gives individual prediction, but also reveals the

conformity of each new prediction when compared to the group of observations

already examined, able to offer additional yet important information about the

confidence and credibility for each prediction and avoid overestimating the over-70

all accuracy of prediction [40].

In this work, samples of breath air from lung cancer patients and controls

are gathered and analyzed with an electronic nose, which is followed by the us-

age of conformal prediction based on k-nearest neighbors for lung cancer sample

classification. In Section 2, the definition of conformal prediction and its ap-75

plications in online prediction and offline prediction are illustrated respectively.

Then, the sampling processes, the electronic nose system and data processing

methods are illustrated in Section 3. Results and implications are discussed and

analyzed in Section 4. Finally, the conclusion is drawn in Section 5.

2. Methods80

2.1. Conformal Prediction

2.1.1. Definition

In the problem of machine learning classification, there are usually a set of

samples as the training sets.

Each observation contains one object xi ∈ X and one label yi ∈ Y , in which85

X denotes object space and Y denotes label space. As long as a new sample xn

is given, the task of classification is to predict the label to which this sample
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belongs.

((x1, y1), ..., (xn−1, yn−1)) (1)

zi = (xi, yi), i = 1, 2, ..., (n− 1) (2)

With the samples and labels combined, example space Z can be set.

What simple predictor does is to find one mapping F which helps the pre-90

diction of new samples xn based on present example space Z∗.

F : Z∗ ×X −→ Y (3)

When compared with simple predictors, conformal predictors have another

parameter ε ∈ (0, 1), which is defined as the significance level. Meanwhile, 1-ε

is defined as the confidence level, which reflects the confidence for individual

prediction. A conformal predictor output a subset of label space Y based on a95

given significance level:

Γε((x1, y1), ..., (xn−1, yn−1), xn) (4)

The subsets output by conformal predictors are nested, as is shown below:

Γε1(z1, ..., zn−1), xn) ⊂ Γε2(z1, ..., zn−1), xn)(∀ε1 ≥ ε2) (5)

In order to output the prediction sets, it is necessary to introduce a mea-

surable function A mapping each observation zi(i = 1, 2, . . . , n) ∈ Z to a real

number αi(i = 1, 2, . . . , n) ∈ R. The process is defined as nonconformity mea-100

surement, which reflects how conformed each observation is when placed in a

group of other observations:

αi = A(z1, ...zi−1, zi+1, ..., zn), i = 1, ..., n (6)

Additionally, A should be based on a specific statistical learning algorithm

and satisfy the following property of exchangeability assumption: for any n and

any permutation π,105

(α1, ..., αn) = A(z1, ..., zn) −→ (απ(1), ..., απ(n)) = A(zπ(1), ..., zπ(n)) (7)

5



Then, the conformal predictor dependent on A is defined as:

Γε(z1, z2, ...zn−2, zn−1, zn) = {y|pε > ε} (8)

For a new sample xn, conformal predictor outputs all those possible labels

in the set Γε based on a given significance level ε ∈ (0, 1) and the training set.

For each possible label y ∈ Y , the p-value associated with it is defined as:

py =
|{i = 1, ..., n|αyi > αyn}|

n
(9)

where py represents that when the label of xn is y, how well the unseen obser-110

vation conforms to other observations.

The corresponding sequence of nonconformity scores for one predicted label

y is defined by:

(αy1 , α
y
2 , ..., α

y
n) = A(z1, z2, ..., zn−1, (xn, y)) (10)

Based on αyn, it is recognized that the lower αyn is, the higher confidence we

have for the prediction, since it means this combination of feature and label115

conforms better with other observations.

For conformal prediction, the validity of the prediction means:

P (yn /∈ Γε(x1, y1, ..., xn−1, yn−1, xn)) ≤ ε (11)

2.1.2. Nonconformity Measurement

Theoretically speaking, any algorithm can be modified to be the fundamen-

tal algorithm on which nonconformity measure can be based. Vladmir Vovk.120

originally based the calculation of nonconformity of conformal prediction on k-

nearest neighbor. The typical method based on k-nearest neighbors(KNN) is

also applied in this work. To make it simple and clear, CP-1NN and CP-3NN

are used to denote conformal predictors based on 1NN and 3NN respectively

and the corresponding simple predictors are denoted as 1NN and 3NN. The125

nonconformity measure algorithm is illustrated as below:

For a specific observation (xi, yi), firstly, the distance between this observa-

tion and any other observation in the training set is calculated, as is denoted
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as:

d(xi, xj), j = 1, 2, ..., i− 1, i+ 1, ..., n (12)

Then, k nearest observations with the same label as that of(xi, yi) are found130

and denoted as (xis, yis),s=1,...,k. Meanwhile, k nearest observations with dif-

ferent labels from that of (xi, yi) are found and denoted as (xjs, yjs),s=1,...,k.

The nonconformity score is given by the sum of distances between the test ob-

servation and k nearest homogeneous observations (with the same label) divided

by the sum of distances between the test observation and k nearest heteroge-135

neous observations (with different labels). The k is a number set for both the

heterogeneous observations and homogenous observations.

αi =

∑k
s=1 d(xis, yis)∑k
s=1 d(xjs, yjs)

(13)

Based on the method listed above, the closer to observations with the same

label a new observation is, the better conformed this new observation is and the

lower α is.140

2.1.3. Prediction in Online Mode

As one of the most prevailing protocols for machine learning problems, online

prediction observes an ongoing and step-by-step principle which is practical

and useful in real-world application. In this mode, after a fixed number of

observations are listed in the training set, the label yn+1 of the new sample145

xn+1 is predicted based on the existing training set:

((x1, y1), (x2, y2), ..., (xn, yn)) (14)

Then, the effectiveness of the prediction is evaluated, from the perspective

of erroneous prediction errεn, multiple prediction multεn or empty prediction

empεn, which will be illustrated later. Afterwards, this new observation with its

correct label, is added to the training set to enlarge the number of observations150

available for further prediction. The process is conducted repeatedly, which

means the training set is continuously updated during the whole process of
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online prediction. The steps showing how online mode works are listed as follows

[40]:

ONLINE PREDICTION PROTOCOL:155

Errε0 := 0, ε ∈ (0, 1);

Multε0 := 0, ε ∈ (0, 1);

Empε0 := 0, ε ∈ (0, 1);

Training set= {(x1, y1), (x2, y2), ..., (xi, yi)};

FOR n=1,2,...:160

Reality inputs xn ∈ X;

Predictor outputs Γε ⊂ Y for all ε ∈ (0, 1);

Reality outputs yn ∈ Y ;

errεn = {1 if yn /∈Γε

0 otherwise

Errεn = Errεn−1 + errεn165

multεn = {1 if |Γεn|>1
0 otherwise

Multεn = Multεn−1 +multεn

empεn = {1 if |Γεn|=0
0 otherwise

Empεn = Empεn−1 + empεn

Training set=Training set,(xn, yn)170

END FOR

When formula (11) and strong law of large number are taken into consider-

ation, the validity for online conformal predictors is shown that:

lim
n→∞

sup
Errεn
n
≤ ε (15)

2.1.4. Prediction in Offline Mode

Offline prediction is the counterpart of online prediction and is characterized175

by prediction based on a fixed training set and fixed model. In this project, the

offline prediction is done in a leave-one-out cross validation mode. The pre-

diction in offline mode rests on certain rules gained from static training set,

and the validity of conformal prediction in offline mode is not strictly proved.

Conformal prediction in offline mode can provide users with additional infor-180

mation respecting confidence for each prediction, instead of just giving out the
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predictions. The reliability information provides users with risk information for

better decisions. For the prediction of each individual, conformal predictor can

output the label with the highest p-value, which is defined as the forced predic-

tion. Along with it, conformal predictor offers reliability information with two185

features, confidence and credibility:

confidence = sup{1− ε :| Γε |≤ 1} (16)

credibility = inf{ε :| Γε |= 0} (17)

In the problem of classification, confidence equals to 1 minus the second

largest p-value, which represents the confidence of prediction when the predicted

label with the largest p-value is chosen while others are rejected. Credibility

equals to the largest p-value, indicating how well conformed this selected choice190

is.

A prediction is judged to be reliable as long as confidence approximates 1

while credibility does not approximate 0 [38], meaning there are no better choices

when compared to this prediction. If credibility is close to 0, the prediction tends

to be nonconformal in the group and may probably be an unreliable outlier.195

2.2. Experiments and Data Processing

2.2.1. Sample Collection

Samples were gathered from patients aging from 30-80 who were firstly di-

agnosed with lung cancer from the Second Affiliated Hospital of Zhejiang Uni-

versity. Meanwhile, the patients selected had not received chemotherapy or200

radiotherapy for 6 months before the tests and had abstained from smoking for

at least 6 months. In addition, the samples for controls came from teachers and

officials with a similar gender ratio and age distribution as the patients. They

came from Zhejiang University and were not diagnosed with any respiratory

disease, diabetes or any other health problem that may negatively influence the205

experiments. Meanwhile, they had not received any surgical operation in one
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Figure 1: The distribution of volunteers’ ages and gender in the patient group (up) and control

group (down).

year. All the volunteers tested offered written approvals. The distribution of

volunteers’ ages were shown in Fig.1.

Among the patients, 26 were adenocarcinoma cases, 1 was small cell carci-

noma case, 2 were squamous-cell carcinoma cases, 2 were large cell carcinoma210

cases. 13 cases were in patients’ left lungs while 18 cases were in the right lungs.

All volunteers were banned from eating after 22:00 the day before sample

collection. Then, samples were collected from 6:00 to 7:00 in the morning on

empty stomachs. Volunteers could wash their mouths with water but couldn’t

brush their teeth. Meanwhile, they had been banned from vigorous activities215

such as running for 2 hours before the tests. All of the samples were collected

under the instructions of researchers.

The M3014-4 offline air collection equipment (ECO MEDICS AG, Duern-
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Figure 2: The illustration of the sampling equipment and process

ten, Switzerland) was used for the sampling process. The air bags were made

from aluminized polyethylene terephthalate. The illustration of the sampling220

equipment was shown in Fig 2. Firstly, a volunteer breathed in through the

mouth. As was indicated by Path A, the air went through the VOC filter and

bacteria filter and entered the mouth. The process lasted for 3-5 min. As the

air was filtered, this process meant to reduce environmental effect. Secondly, a

volunteer took a deep breath and exhaled into the mouth. The requirement was225

that the pressure should be maintained within the range of 10 − 15cmH2O to

reduce the effect of flow rate. The first part of breath air was collected by Dis-

card Bag through Path B and as the Discard Bag was filled, breath air followed

Path C into Mylar Bag. This process ensured the breath air sample represented

the air deep in lungs and reduced the influences of air in trachea and oral cav-230

ity. Finally, the samples were stored in a thermostat at a temperature of 37

degrees Celsius, transported to the lab and analyzed with electronic nose within

an hour. A total of 72 breath air samples (including 31 samples from patients

and 41 samples from controls) were collected with air collectors.
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2.2.2. Electronic Nose System and Experiments235

All the experiments and analysis were based on an electronic nose made in

State Key Laboratory of Industrial Control Technology in Zhejiang University

[40, 41, 42, 43], with 16 metal-oxide semi-conductive (MOS) sensors, of TGS

type and purchased from Figaro Engineering Inc. (Osaka, Japan). This type

of sensors performed well in multicle classification tasks[44, 45]. The 16 sensors240

had overlapped specificity[42, 40]. And the reliability and accuracy of this elec-

tronic nose system has been verified in previous studies [42, 40]. For example,

we[46] have successfully used this system to classify 12 different categories of

alternative herbal medicines with a leave-one-out cross validation(LOOCV) ac-

curacy of 98.94% over 600 observations. What’s more, we have also validated245

the effectiveness of online learning with the electronic nose[47]. In another work,

we[48] applied the electronic nose to discriminate between different origins of

the same type of alternative herbal medicine and reached the LOOCV accuracy

ranging from 85.63% to 99.78% for each classification task.

The schematic description of the e-nose system could be represented in Fig.250

3, which included the sensor array in a 200 ml gas chamber, a three-way valve

changing from the flow of sample and standard clean air, air pumps pumping air

at a rate of 1 L/min, power supply system and data-acquisition units. The three-

way valve was the major controller of the test gas and standard clean air. This

was an generalized electronic nose used for multifunctional applications[40, 41].255

The typical sensitive components of each sensor were shown in table 1 but the

sensors were not only sensitive to components listed. The sensors were able to

react to the volatile organic compounds of breath air with diverse components

including phenols and aldehydes. Meanwhile, they were not excessively sensitive

to one specific type of gas, appropriate for breath air analysis which involves260

complex volatile organic compounds.

The whole process of measurement experiment of each collected sample was

illustrated in Fig. 4 [40, 46, 47, 48]: 400 seconds were set for each individual test

sample experiment. The sampling frequency of the electronic nose system was
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Table 1: Information of the sensors used in 16-sensor array in the electroninc nose

Sensor Type Count Most sensitive to:

TGS800 1 Carbon monoxide, ethanol, methane, hydrogen, ammonia

TGS813 2 Carbon monoxide, ethanol, methane, hydrogen, isobutane

TGS816 1 Carbon monoxide, ethanol, methane, hydrogen, isobutane

TGS821 1 Carbon monoxide, ethanol, methane, hydrogen

TGS822 2 Carbon monoxide, ethanol, methane, acetone, n-hexane,

benzene, isobutane

TGS826 1 Ammonia, trimethyl amine

TGS830 1 Ethanol, R-12, R-11, R-22, R-113

TGS832 1 R-134a, R-12, R-22, ethanol

TGS880 1 Carbon monoxide, ethanol, methane, hydrogen, isobutene

TGS2620 1 Carbon monoxide, methane, isobutene, hydrogen

TGS2600 1 Carbon monoxide, hydrogen

TGS2602 1 Hydrogen, ammonia ethanol, hydrogen sulfide, toluene

TGS2610 1 Ethanol, hydrogen, methane, isobutene, propane

TGS2611 1 Ethanol, hydrogen, isobutene, methane
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Figure 3: The brief illustration of the electronic nose system used in this project

100Hz. To begin with, standard clean air was pumped into the sensor panel at265

a rate of 1 L/min for 20 seconds to let the sensor responses return to baseline.

Then, upon the time when the flow of standard clean air was stopped, the test

gas sample was injected to the chamber as soon as possible. Medical injectors

were used to extract 10ml gas mixtures. Afterwards, we set 180 seconds for the

reaction period and recorded the sensor responses in terms of voltage change.270

At t=200s, the standard clean air was pumped into the system again and the

test gas sample was pumped out. From t=200s to t=340s, we recorded the

declining patterns of sensor responses. Finally, another 60 seconds were set for

the sensors to further stabilize and return to baseline.

After extracting breath air samples, all of the tests with e-nose were con-275

ducted in the same laboratory with the same electronic nose at environment

temperatures varying from 22 to 25 degrees Celsius and with relative humidity

records ranging from 50-65%.

2.2.3. Data Processing and Feature Extraction

The data processing of this work was done on a personal computer without280

GPU acceleration. Typical sensor responses were shown in Fig. 5, which showed
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Figure 4: The whole process of one single experiment

the responses to the first control sample with each curve representing one of the

16 sensors. The sampling time was 0.01s. Discrete Wavelet Transform(db2) was

used to decompose the signals and the fifth level of decomposed signals were

selected to deal with noises. Then, all the recorded signals were calibrated by285

subtracting the baseline values to minimize influences of sensor drifts:

V = VS − V0 (18)

Vs denoted the response of a sensor after filtering and V0 denoted the baseline

value after filtering.

Afterwards, based on previous time-series data-mining performances [40, 41,

46, 47, 48], 9 commonly used features for e-nose (a total of 9*16=144 features)290

were extracted:

1.Maximum Value

Vmax = max(| V |) (19)

2.Integral Value

Vint =

∫ T

0

V (t)dt (20)
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T denoted the whole time for measurement, T=340s.

3.Phase Information295

Vphase =

∫ |Vmax|
0

(
dV (t)

dt
)2dt (21)

4-9.Exponential moving average of the derivative of V

Ea(V ) = [min(y(k)),max(y(k))], 2000 < k < 34000 (22)

The discrete sampling exponential moving average y(k) and smoothing factor a

were defined as:

y(k) = (1− a)y(k − 1) + a(V (k)− V (k − 1)) (23)

a =
1

100 ∗ SR
,

1

10 ∗ SR
,

1

SR
(24)

y(1) = aV (1) (25)

SR = 100 denoted the sampling rate. Ea(V ) denoted the vector containing

the largest value and the smallest value in the period of time after the injection of300

a gas sample. The feature extraction is guided by previous researches but feature

significance evaluation, sensor optimization and more effective information could

be done, which is open to further researches in the future.

Afterwards, these features were pieced together to a 72*144 matrix with

each column representing one feature. Finally, each column of features were305

normalized by subtraction of the minimum and division of the range of each

feature. After normalization, the features were in the range from 0 to 1. All the

data preprocessing and model training were done with MATLAB R2017b.

3. Results and Discussion

3.1. Offline Prediction with Conformal Prediction310

In the offline prediction mode, leave-one-out cross validation protocol was

applied. The results of forced prediction given by conformal predictors with
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Figure 5: A typical sensor response curve given by the e-nose system

Table 2: Conformal Prediction Accuracy In Offline Mode

Prediction Method 1NN 3NN

Forced Conformal Prediction 87.50% 83.33%

Simple Prediction 87.50% 81.94%

1NN (CP-1NN) and 3NN (CP-3NN), in which the label with the highest p-

value was the output, and the results of simple prediction given by 1NN and

3NN were presented in table 2.315

According to the results, with regard to the accuracy of prediction, CP-1NN

performs as well as 1NN while CP-3NN outperforms 3NN. Without sacrifice

of accuracy, conformal prediction provides additional information about the

confidence and credibility which underlies each prediction. To be concrete, five

typical predictions are selected randomly and the results are shown in table 3320

(CP-1NN). Label 0 denotes control while label 1 denotes patient. According to

the results of CP-1NN, given by the forced predictor, the first sample is predicted

to be of label 0 with confidence 0.9167, which indicates that the predictor is

confident to reject the other label. Meanwhile, this prediction has a credibility

17



Table 3: Five typical individual predictions with CP-1NN

Sample True Forced Confidence Credibility Simple

Index Label Prediction Prediction

1 0 0 0.9167 0.1667 0

25 0 0 0.9722 0.3333 0

37 0 0 0.9861 0.7083 0

59 1 1 0.9861 0.9306 1

64 1 1 0.9583 0.3194 1

of 0.1667, which shows that although the other label is inappropriate compared325

with the chosen label, this prediction itself does not conform to the training set

very well and the reliability of this prediction is not high. The 59th sample is

predicted to be of label 1, which is correct, with confidence 0.9861 and credibility

0.9306, which indicates that this prediction is reliable that it not only conforms

well to the training set but also conforms better than its counterpart label.330

For sample 1 and sample 64, lower credibility means the results are not quite

reliable. Under these circumstances when the reliability of prediction is not high

enough, though specific diagnosis can be given, doctors should inform customers

of the risks of misleading diagnosis and recommend these customers to keep a

closer look at their health and take further medical analysis once low confidence335

or low credibility occurs, as an erroneous diagnosis may bring huge burden to

customers.

From the results in offline mode, in addition to giving the predicted labels,

conformal predictors provide additional and significant reliability information

about individual prediction with confidence and credibility, which may play an340

important role in diagnosis.

3.2. Online Prediction with Conformal Prediction

According to the protocol illustrated in Section 2, CP-1NN and CP-3NN

were used for online prediction. Samples were reshuffled randomly and the first
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Figure 6: Results of online conformal prediction with 1NN,ε = 0.2

20 samples were used as the initial training set. Afterwards, each new sample345

from the reshuffled sample sets underwent prediction.

The results of cumulative singleton prediction (Singεn), multiple predictions

(Multεn) and empty predictions (Empεn) under the significance levels 0.2 and

0.1 are illustrated in Fig. 6 and 7 respectively. Initially, with limited training

samples, the conformal predictors tend to output multiple predictions. Gradu-350

ally, as more observations are added, the model become more robust. Multiple

predictions stop arising while singleton predictions prevail, which indicates that

with more samples, the sample can be classified into one group while rejecting

the counterpart choice with higher confidence. Possible reason may be that more

samples expand the space covered by a specific type of sample in the sample355

space which helps improve the predictor’s knowledge and generalization ability.

In addition to the tendency of predictions discussed above, by giving such

prediction forms as multiple, empty or singleton, conformal predictions provide

users with information about the distribution of samples in the sample space.

For instance, the 20th sample is given multiple prediction, which indicates that360

this sample may locate near the borderline between two labels. Meanwhile,

if one sample is given an empty prediction, it means that neither of the two
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Figure 7: Results of online conformal prediction with 1NN, ε = 0.1

labels provides reliable prediction for this sample, and this sample may serve

as an outlier not conforming to both groups. As for the implications in lung

cancer diagnosis, once multiple prediction or empty prediction arises, doctors365

should think twice before diagnosing since it is not definitely clear whether the

prediction is accurate and reliable.

Two specific features are generally used to describe the performances of

online conformal predictions. Firstly, validity of conformal prediction refers to

the frequency of error predictions: the total number of erroneous predictions370

divided by number of samples. The tendencies of error rates under significance

levels 0.2 and 0.1 are shown in Fig. 8. According to the results, the validity

of online conformal prediction can be manifested that with the accumulation

of observations, the error rate tends not to exceed the upper bound set by the

significance level.375

Based on the validity illustrated, it seems that with lower significance level

ε and higher confidence level 1 − ε, the error rate is guaranteed to be lower

with enough samples. Nevertheless, it does not necessarily mean the higher

confidence level 1 − ε, the better the conformal predictor will be, when the

efficiency of conformal prediction is taken into consideration.380
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Figure 8: Tendency of erroneous prediction with CP-1NN (ε = 0.2, 0.1)

To fulfill the reliability requirements, conformal predictors tend to output

multiple predictions (double predictions in this problem) to avoid misclassifying

samples and abide by the confidence level. This leads the predictor to be less

efficient. Therefore, as long as the nonconformity measurement method is fixed,

it is necessary for users to strike a balance between confidence and efficiency.385

Generally, there are two major criteria specifying the efficiency of conformal pre-

dictors [49]: the percentage of multiple predictions in all tested sample Multεn/n,

denoted as M criterion (’M’ for ‘Multiple’), and the average number of predicted

labels labels in the predict region of multiple prediction, W Multεn/n which is

denoted as E criterion (’E’ for ‘Excess’). Based on these two criteria, the results390

are listed in table 4 and the tendency of multiple predictions is shown in Fig.

9 and 10. According to the results, since this is a binary classification problem,

the average number of multiple predictions is 2. Choosing both labels indicates

the efficiency of conformal predictor declines, which calls for further diagnostic

analysis for this sample to avoid misclassification under the current reliability395

requirement. Meanwhile, it is evident that higher confidence level 1− ε leads to

higher rate of multiple predictions. Therefore, it is necessary for users to set an

appropriate significance level to balance efficiency and reliability.
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Table 4: Efficiency of online conformal prediction

Predictor Multεn/n W Multεn/n

ε = 0.2 ε = 0.1 ε = 0.2 ε = 0.1

CP-1NN 0.1154 0.3077 2 2

CP-3NN 0.0962 0.2115 2 2

Figure 9: Tendency of multiple predictions with CP-1NN

What is more, when comparisons are made between CP-1NN and CP-3NN,

it is clear from the results that in this case of classifying lung cancer samples,400

CP-3NN tends to output fewer multiple predictions, indicating that it is more

efficient when compared with CP-1NN.

3.3. Comparison with Previous Studies

Previous studies have been done related to lung cancer screening with elec-

tronic nose data[50, 51]. For instance, Rens van de Goor et al[50] applied405

electronic nose data and artificial neural network(ANN) and successfully dif-

ferentiated patients with controls with a sensitivity of 88%, specificity of 86%

and diagnostic accuracy of 86%. Madara Tirz̈ıte et al[46] employed logistic re-

gression analysis on detection of lung cancer with electronic nose and gained an
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Figure 10: Tendency of multiple predictions with CP-3NN

overall sensitivity of 95.8% for smokers and 96.2% for non-smokers.410

Admittedly, with larger dataset, the metrics of prediction in these previous

studies tend to be better. When compared to these two studies, the specific

contributions of this paper are listed as follows:

Firstly, with regard to generalization ability from one dataset to another,

this study offers better risk information and uncertainty for future classification415

tasks for unseen datasets. The datasets and models are pretty consistent in

previous studies, which means the researchers base their evaluation on the same

overall cohort in e-nose experiment. What is more important is how well the

classifiers perform when dealing with inhomogeneous datasets, such as e-nose

system with manufacturing differences, different temperature, humidity and dif-420

ferent conditions of sensor aging. Therefore, high sensitivities, specificities are

not a guarantee of overall performances across from different datasets. As no

one could examine all the real-world electronic nose datasets, in this sense, pre-

diction itself and the metrics related to predictions in the specific retrospective

tests may not be enough without considering reliability, the uncertainty informa-425

tion and the confidence of prediction which could be expanded for more clinical

values. The current study lay more emphasis on the reliability of prediction
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with CP-KNN. This could bring more value in addition to merely giving out

the prediction itself. Moreover, the mathematic foundation of the reliability of

Conformal Prediction is strictly justified by Vladimir Vovk. and colleagues. In430

this study, we also experimentally validated the reliability in an online man-

ner. The confidence in the reliability evaluation can be ensured, which could

not be interpretable in ANN and LR. The ANN and LR may work really well

under specific circumstances with some systems, the generalization ability, in-

terpretability of their reliability is not beyond doubt.435

Secondly, both of these two previous studies are typical parametric meth-

ods and rely on specific model assumption. For artificial neural network, the

architecture, weights, bias of activation function trained from training set may

be incompatible to real-world cases if transferred to a different dataset acquired

from a different electronic nose. This could take a lot more time in the train-440

ing process for each individual electronic-nose system. In logistic regression, a

linear model assumption and maximum likelihood estimate of the parameters

may not be appropriate for electronic nose data. The data is both influenced by

system noises, sensor drifts and influenced by collinearity, which could lead to

extremely not robust classifiers. For instance, the collinearity between features445

for one sensor and across sensors could lead the coefficients of the logistic regres-

sion model to variate over a large range and be numerically unstable. Therefore,

when dealing with electronic nose, a non-parametric method such as CP-KNN

may be a wiser choice.

4. Conclusion450

In this work, a novel application of conformal prediction in lung cancer pre-

diction with an electronic nose system is introduced. Breath air samples from

lung cancer patients and controls are collected and analyzed in e-nose system.

Afterwards, the data are processed with conformal prediction in both offline

mode and online mode. Nonconformity measurement for conformal predictions455

are based on 1NN and 3NN in this work. In offline mode, the accuracies of con-

24



formal prediction based on 1NN (CP-1NN) and 3NN (CP-3NN) are 87.50% and

83.33% respectively, which are slightly better than those results gained from

simple predictors 1NN and 3NN. In addition to predicted results, conformal

predictors enable users to know the reliability of individual prediction by giv-460

ing confidence and credibility of each prediction, which is important in cancer

diagnosis. In online mode, validity of conformal prediction is manifested that

with growing number of samples, the erroneous prediction rate gradually lies

below the significance level set by users, meaning the predictor can not only

effectively perform online lung cancer diagnosis but also become more accurate465

and robust with more samples. Additionally, the potential of conformal pre-

diction to indicate the distribution of samples has been discussed. Meanwhile,

it is necessary for users to balance confidence and efficiency while considering

confidence level for conformal prediction, since higher confidence level usually

leads to more frequent multiple predictions, a symbol of lower efficiency. The470

developed software provides an additional analytical solution. With the hard-

ware of electronic nose, the data can be obtained and analyzed with the software

in labs and clinics.

In future work, different methods of nonconformity measurement can be

applied in conformal predictions for data gathered from electronic nose systems475

to improve validity and efficiency as this project only proposes the framework

based on CP-KNN. Additionally, artificial sensor selection and optimization

could also be done on a supervised way based on the data to find out the sensors

that contribute most to the classification problem. Finally, when it comes to the

dealing with low-reliability diagnosis, more solutions such as data fusion with480

different analytic methods and diagnostic imaging such as GC-MS, CT to deal

with conditions with low credibility could also be studied in order to provide

more diagnostic values for patients.
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