6,542 research outputs found

    Interpretable Style Transfer for Text-to-Speech with ControlVAE and Diffusion Bridge

    Full text link
    With the demand for autonomous control and personalized speech generation, the style control and transfer in Text-to-Speech (TTS) is becoming more and more important. In this paper, we propose a new TTS system that can perform style transfer with interpretability and high fidelity. Firstly, we design a TTS system that combines variational autoencoder (VAE) and diffusion refiner to get refined mel-spectrograms. Specifically, a two-stage and a one-stage system are designed respectively, to improve the audio quality and the performance of style transfer. Secondly, a diffusion bridge of quantized VAE is designed to efficiently learn complex discrete style representations and improve the performance of style transfer. To have a better ability of style transfer, we introduce ControlVAE to improve the reconstruction quality and have good interpretability simultaneously. Experiments on LibriTTS dataset demonstrate that our method is more effective than baseline models.Comment: Accepted at Interspeech202

    Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet

    Full text link
    The specific heat and thermal conductivity of the insulating ferrimagnet Y3_3Fe5_5O12_{12} (Yttrium Iron Garnet, YIG) single crystal were measured down to 50 mK. The ferromagnetic magnon specific heat CCm_m shows a characteristic T1.5T^{1.5} dependence down to 0.77 K. Below 0.77 K, a downward deviation is observed, which is attributed to the magnetic dipole-dipole interaction with typical magnitude of 10−4^{-4} eV. The ferromagnetic magnon thermal conductivity κm\kappa_m does not show the characteristic T2T^2 dependence below 0.8 K. To fit the κm\kappa_m data, both magnetic defect scattering effect and dipole-dipole interaction are taken into account. These results complete our understanding of the thermodynamic and thermal transport properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure

    Poly[4-(dimethyl­amino)pyridinium [(μ6-5-carboxy­benzene-1,2,4-tricarboxy­ato-κ6 O 1:O 1′:O 2:O 4:O 4′:O 5)diargentate(I)]]

    Get PDF
    In the title compound, {(C7H11N2)[Ag2(C10H3O8)]}n, the polymeric anion consists of two AgI atoms and a Hbtc3− ligand (H4btc = benzene-1,2,4,5-tetra­carboxylic acid). Each AgI atom is coordinated by four O atoms from three different Hbtc3− ligands. The two AgI atoms are bridged by two bidentate carboxyl­ate groups into an Ag2O4 cyclic unit, with an Ag⋯Ag distance of 2.8189 (3) Å. In this way, the Ag atoms are connected by the Hbtc3− ligands into an extended two-dimensional layer structure. A three-dimensional network is accomplished through O—H⋯O hydrogen bonds between the anionic layers. The cationic guest Hdmap+ [dmap = 4-(dimethyl­amino)pyridine] is trapped in the network and adheres to the layer by an N—H⋯O hydrogen bond

    Current trends and developments in progressive collapse research on reinforced concrete flat plate structures

    Get PDF
    Progressive collapse of structures caused by extreme or accidental loads may lead to significant loss of life and property. Considerable research efforts have been made to date to mitigate the probability of progressive collapse and its consequences. This study summarises the fundamentals of progressive collapse in relation to the existing theoretical concepts and understanding. Specifically the existing theories pertinent to progressive collapse of building structures, in particular reinforced concrete (RC) flat plates, are examined from the following four key aspects: (1) definition of progressive collapse from deformation and/or strength perspectives with respect to the failure criteria of structural members and the entire structural system; (2) failure mechanisms of load-bearing systems undergoing progressive collapse with respect to the structural ultimate capacity, which has not been considered in the design process; (3) research methodologies for investigating collapse mechanisms, with emphases on experimental and numerical approaches; and (4) collapse-resistant design principles as covered in several international design standards in which a number of robustness requirements have been recognised. Based on the schematic review of the current trends and developments, gaps and limitations in progressive collapse research are identified and a new research direction is established to advance the progressive collapse study of RC flat plate structures

    Role of calcium in the expression of MAP kinase kinases (MKKs) and MAP kinases in tomato flower abscission

    Get PDF
    The mitogen activated protein kinase (MAPK) cascade is an important intracellular signaling module that functions as a convergent point for crosstalk during stress signaling. In this study, we constructed a phylogenetic tree for MAP kinase kinases (MKKs) and MAP kinases (MPKs) in Arabidopsis and Lycopersicon esculentum (tomato) and found that abscission-related AtMKK4 and AtMKK5, and AtMPK3 and AtMPK6 clustered with LeMKK2, and LeMPK1,and LeMPK2 and LeMPK3, respectively. To investigate whether there was a link between homology and abscission, we studied all the LeMKKs at the messenger ribonucleic acid (mRNA) transcript level. LeMKK2 and its homologue AtMKK4/5 both have roles in regulating abscission. Quantitative real time polymerase chain recation (qRT-PCR) of LeMPK1 and LeMPK2, which are highly homologous to AtMPK3 and AtMPK6, most probably mediate abscission downstream through LeMKK2. Calcium depressed the expression of these genes in the early stages of abscission. Treatment with W7 (a calmodulin inhibitor) indicated that the expression of LeMKKs and LeMPKs depended on calmodulin during tomato flower explant abscission.Keyword: Abscission, calcium, qRT-PCR, MAPK, tomat
    • …
    corecore