16,870 research outputs found

    Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms

    Full text link
    A simple set of algebraic equations is derived for the exact low-temperature thermodynamics of one-dimensional multi-component strongly attractive fermionic atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For linear Zeeman splitting, the physics of the gapless phase at low temperatures belongs to the universality class of a two-component asymmetric TLL corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms. The equation of states is also obtained to open up the study of multi-component TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure

    Experimental study on sinter pot test with added light burnt dolomite in sintering production

    Get PDF
    Reasonable matching structure of sintering flux has great effect on improving the sinter quality and reducing energy consumption. In this paper, the feasibility of replacing part or all of quick lime in sintering production with limestone, dolomite, light burnt magnesium powder and light burnt dolomite is studied by sinter pot test in the lab. The result shows that when with 5,47 % of light burnt dolomite replacing part of the quick lime, the results such as the weighted average of sinter granularity, the production yield, the utilization coefficient, the tumbler index and the reduction degree meet the actual production requirements

    Universal local pair correlations of Lieb-Liniger bosons at quantum criticality

    Full text link
    The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for the strong coupling Bose gas at quantum criticality using the polylog function in the framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal value g(2)(0)≈2p/(nΔ)g^{(2)}(0)\approx 2 p/(n\varepsilon) in the quantum critical regime, the TLL phase and the quasi-classical region, where pp is the pressure per unit length rescaled by the interaction energy Δ=ℏ22mc2\varepsilon=\frac{\hbar^2}{2m} c^2 with interaction strength cc and linear density nn. This suggests the possibility to test finite temperature local pair correlations for the TLL in the relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase. Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial expansion of the Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference

    Measuring semantic similarity between concepts in visual domain

    Get PDF
    Author name used in this publication: Dagan FengRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect

    Full text link
    A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will study analytically the scaling of the mean first-passage time (MFPT) for random walks on scale-free small-world networks. To this end, we first map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we present an iterative algorithm for generating the Koch network, based on which we derive closed-form expressions for the relevant topological features, such as degree distribution, clustering coefficient, average path length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behavior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the number of all nodes in the network. The obtained analytical results are corroborated by direct extensive numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random walks on the Koch network.Comment: 12 pages, 8 figures. Definitive version published in Physical Review

    The Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem

    Get PDF
    A new approach for solving the Bethe ansatz (Gaudin-Richardson) equations of the standard pairing problem is established based on the Heine-Stieltjes correspondence. For kk pairs of valence nucleons on nn different single-particle levels, it is found that solutions of the Bethe ansatz equations can be obtained from one (k+1)x(k+1) and one (n-1)x(k+1) matrices, which are associated with the extended Heine-Stieltjes and Van Vleck polynomials, respectively. Since the coefficients in these polynomials are free from divergence with variations in contrast to the original Bethe ansatz equations, the approach thus provides with a new efficient and systematic way to solve the problem, which, by extension, can also be used to solve a large class of Gaudin-type quantum many-body problems and to establish a new efficient angular momentum projection method for multi-particle systems.Comment: ReVTeX, 4 pages, no figur

    Integrable variant of the one-dimensional Hubbard model

    Get PDF
    A new integrable model which is a variant of the one-dimensional Hubbard model is proposed. The integrability of the model is verified by presenting the associated quantum R-matrix which satisfies the Yang-Baxter equation. We argue that the new model possesses the SO(4) algebra symmetry, which contains a representation of the η\eta-pairing SU(2) algebra and a spin SU(2) algebra. Additionally, the algebraic Bethe ansatz is studied by means of the quantum inverse scattering method. The spectrum of the Hamiltonian, eigenvectors, as well as the Bethe ansatz equations, are discussed
    • 

    corecore