39 research outputs found

    Intelligent Economic Alarm Processor (IEAP)

    Get PDF
    The advent of electricity market deregulation has placed great emphasis on the availability of information, the analysis of this information, and the subsequent decision-making to optimize system operation in a competitive environment. This creates a need for better ways of correlating the market activity with the physical grid operating states in real time and sharing such information among market participants. Choices of command and control actions may result in different financial consequences for market participants and severely impact their profits. This work provides a solution, the Intelligent Economic Alarm Processor to be implemented in a control center to assist the grid operator in rapidly identifying the faulted sections and market operation management. The task of fault section estimation is difficult when multiple faults, failures of protection devices, and false data are involved. A Fuzzy Reasoning Petri-nets approach has been proposed to tackle the complexities. In this approach, the fuzzy reasoning starting from protection system status data and ending with estimation of faulted power system section is formulated by Petri-nets. The reasoning process is implemented by matrix operations. Next, in order to better feed the FRPN model with more accurate inputs, the failure rates of the protections devices are analyzed. A new approach to assess the circuit breaker’s life cycle or deterioration stages using its control circuit data is introduced. Unlike the traditional “mean time” criteria, the deterioration stages have been mathematically defined by setting up the limits of various performance indices. The model can be automatically updated as the new real-time condition-based data become available to assess the CB’s operation performance using probability distributions. The economic alarm processor module is discussed in the end. This processor firstly analyzes the fault severity based on the information retrieved from the fault section estimation module, and gives the changes in the LMPs, total generation cost, congestion revenue etc. with electricity market schedules and trends. Then some suggested restorative actions are given to optimize the overall system benefit. When market participants receive such information in advance, they make estimation about the system operator's restorative action and their competitors' reaction to it

    Recent Advances in Hypertrophic Cardiomyopathy: A System Review

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a common genetic cardiovascular disease present in 1 in 500 of the general population, leading to the most frequent cause of sudden death in young people (including trained athletes), heart failure, and stroke. HCM is an autosomal dominant inheritance, which is associated with a large number of mutations in genes encoding proteins of the cardiac sarcomere. Over the last 20 years, the recognition, diagnosis, and treatment of HCM have been improved dramatically. And moreover, recent advancement in genomic medicine, the growing amount of data from genotype-phenotype correlation studies, and new pathways for HCM help the progress in understanding the diagnosis, mechanism, and treatment of HCM. In this chapter, we aim to outline the symptoms, complications, and diagnosis of HCM; update pathogenic variants (including miRNAs); review the treatment of HCM; and discuss current treatment and efforts to study HCM using induced pluripotent stem cell–derived cardiomyocytes and gene editing technologies. The authors ultimately hope that this chapter will stimulate further research, drive novel discoveries, and contribute to the precision medicine in diagnosis and therapy for HCM

    Cardiosphere-derived cells demonstrate metabolic flexibility that Is influenced by adhesion status

    Get PDF
    Adult stem cells demonstrate metabolic flexibility that is regulated by cell adhesion status. The authors demonstrate that adherent cells primarily utilize glycolysis, whereas suspended cells rely on oxidative phosphorylation for their ATP needs. Akt phosphorylation transduces adhesion-mediated regulation of energy metabolism, by regulating translocation of glucose transporters (GLUT1) to the cell membrane and thus, cellular glucose uptake and glycolysis. Cell dissociation, a pre-requisite for cell transplantation, leads to energetic stress, which is mediated by Akt dephosphorylation, downregulation of glucose uptake, and glycolysis. They designed hydrogels that promote rapid cell adhesion of encapsulated cells, Akt phosphorylation, restore glycolysis, and cellular ATP levels

    Result of a year-long animal survey in a state-owned forest farm in Beijing, China

    Get PDF
    BackgroundArtificial forest can have great potential in serving as habitat to wildlife, depending on different management methods. As the state-owned forest farms now play a new role in ecological conservation in China, the biological richness of this kind of land-use type is understudied. Once owned by a mining company, a largest state-owned forest farm, Jingxi Forest Farm, has been reformed to be a state-owned forest farm with the purpose of conservation since 2017. Although this 116.4 km2 forest farm holds a near-healthy montaine ecosystem very representative in North China, a large proportion of artificial coniferous forest in the forest farm has been proven to hold less biodiversity than natural vegetation. This situation, however, provides a great opportunity for ecological restoration and biodiversity conservation. Therefore, from November 2019 to December 2020, we conducted a set of biodiversity surveys, whose results will serve as a baseline for further restoration and conservation.New informationHere, we report the result of a multi-taxa fauna diversity survey conducted in Jingxi Forest Farm mainly in year 2020 with explicit spatial information. It is the first survey of its kind conducted in this area, revealing a total of 19 species of mammals, 86 birds, four reptiles, two amphibians and one fish species, as well as 101 species of insects. Four species of mammals are identified as data-poor species as they have less than 100 occurrence records with coordination in the GBIF database. One species of insect, representing one new provincial record genus of Beijing, is reported

    Association of Allostatic Load and All Cancer Risk in the SWAN Cohort

    No full text
    Elevated chronic stress is thought to increase cancer risk, though the results so far have been inconsistent. In this study, we assessed the relationship between allostatic load (AL), a biological indicator of chronic stress, and overall cancer risk in 3015 women who participated in the Study of Women’s Health Across the Nation (SWAN). Based on the distribution of AL, the study population was categorized into four groups, from the lowest (1st category) to the highest AL group (4th category). At baseline, African American and Hispanic women were more likely to be in the higher AL categories than White women (p < 0.001). In addition, women who smoked regularly, drank alcohol regularly, had no leisure physical activity, and had restless sleep were also more likely to be in the higher AL categories than their relative counterparts (p < 0.001). We also observed that women in the lower-income category with no health insurance were more likely to be in the higher AL category (p < 0.001). The study then found that women in the 4th category of AL (the highest AL group) had a 1.64-fold increased risk of overall cancer (Hazard ratio (HR): 1.64, 95% confidence interval (CI): 1.04, 2.59). The risk association was further strengthened after adjusting demographics, healthy behaviors, and socioeconomic factors with an HR of 2.08. In further analysis of individual biomarkers of AL score, we found that higher levels of triglyceride and CRP were associated with increased risk of cancer, highlighting the role of metabolic dysfunction and inflammation in the etiology of cancer development. In summary, we report that higher AL is associated with increased cancer risk

    Association between allostatic load and breast cancer risk: a cohort study

    No full text
    Abstract Background Allostatic load (AL) reflects the collective load of chronic stress during lifetime. Previous studies have shown that higher AL is associated with poor clinical outcomes among breast cancer patients. However, the relationship between AL and breast cancer risk is still unclear. Methods To fill the gap, we analyzed the association between AL and the development of breast cancer in 181,455 women identified from the UK Biobank. Results During the follow-up from 2006 to 2020, 5,701 women were diagnosed with incident breast cancer. Significantly higher AL was observed among incident breast cancer cases than all study participants (mean: 2.77 vs. 2.63, P < 0.01). Univariate Cox regression analysis indicated the risk of breast cancer was increased by 5% per one AL unit increase (hazard ratio (HR) = 1.05, 95% confidence interval (CI) 1.04, 1.07). In multivariate analyses, after adjusting demographics, family history of breast cancer, reproductive factors, socioeconomic status, lifestyle factors, and breast cancer polygenic risk score (PRS), the significant association remained (HR = 1.05, 95%CI 1.03, 1.07). The significant relationship was further confirmed in the categorical analysis. Compared with women in the low AL group (AL: 0 ~ 2), those in the high AL group (AL: 3 ~ 11) had a 1.17-fold increased risk of breast cancer (HR = 1.17, 95%CI 1.11, 1.24). Finally, in the stratified analysis, joint effects on the risk of breast cancer were observed between the AL and selected known breast cancer risk factors, including age, family history of breast cancer, PRS, income, physical activity, and alcohol consumption. Conclusion In summary, those findings have demonstrated that higher AL was associated with an increased breast cancer risk in women. This association is likely independent of known breast cancer risk factors. Thus, the AL could be a valuable biomarker to help breast cancer risk prediction and stratification

    Conservation and Divergence of <i>SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE</i> (<i>SPL</i>) Gene Family between Wheat and Rice

    No full text
    The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family affects plant architecture, panicle structure, and grain development, representing key genes for crop improvements. The objective of the present study is to utilize the well characterized SPLs’ functions in rice to facilitate the functional genomics of TaSPL genes. To achieve these goals, we combined several approaches, including genome-wide analysis of TaSPLs, comparative genomic analysis, expression profiling, and functional study of TaSPL3 in rice. We established the orthologous relationships of 56 TaSPL genes with the corresponding OsSPLs, laying a foundation for the comparison of known SPL functions between wheat and rice. Some TaSPLs exhibited different spatial–temporal expression patterns when compared to their rice orthologs, thus implicating functional divergence. TaSPL2/6/8/10 were identified to respond to different abiotic stresses through the combination of RNA-seq and qPCR expression analysis. Additionally, ectopic expression of TaSPL3 in rice promotes heading dates, affects leaf and stem development, and leads to smaller panicles and decreased yields per panicle. In conclusion, our work provides useful information toward cataloging of the functions of TaSPLs, emphasized the conservation and divergence between TaSPLs and OsSPLs, and identified the important SPL genes for wheat improvement
    corecore