134 research outputs found

    User Activity Detection and Channel Estimation for Grant-Free Random Access in LEO Satellite-Enabled Internet-of-Things

    Full text link
    With recent advances on the dense low-earth orbit (LEO) constellation, LEO satellite network has become one promising solution to providing global coverage for Internet-of-Things (IoT) services. Confronted with the sporadic transmission from randomly activated IoT devices, we consider the random access (RA) mechanism, and propose a grant-free RA (GF-RA) scheme to reduce the access delay to the mobile LEO satellites. A Bernoulli-Rician message passing with expectation maximization (BR-MP-EM) algorithm is proposed for this terrestrial-satellite GF-RA system to address the user activity detection (UAD) and channel estimation (CE) problem. This BR-MP-EM algorithm is divided into two stages. In the inner iterations, the Bernoulli messages and Rician messages are updated for the joint UAD and CE problem. Based on the output of the inner iterations, the expectation maximization (EM) method is employed in the outer iterations to update the hyper-parameters related to the channel impairments. Finally, simulation results show the UAD and CE accuracy of the proposed BR-MP-EM algorithm, as well as the robustness against the channel impairments.Comment: 14 pages, 9 figures, accepted by Internet of Things Journa

    Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN(0001)

    Get PDF
    The recent observation of superconducting state at atomic scale has motivated the pursuit of exotic condensed phases in two-dimensional (2D) systems. Here we report on a superconducting phase in two-monolayer crystalline Ga films epitaxially grown on wide band-gap semiconductor GaN(0001). This phase exhibits a hexagonal structure and only 0.552 nm in thickness, nevertheless, brings about a superconducting transition temperature Tc as high as 5.4 K, confirmed by in situ scanning tunneling spectroscopy, and ex situ electrical magneto-transport and magnetization measurements. The anisotropy of critical magnetic field and Berezinski-Kosterlitz-Thouless-like transition are observed, typical for the 2D superconductivity. Our results demonstrate a novel platform for exploring atomic-scale 2D superconductor, with great potential for understanding of the interface superconductivity

    Expression profiles of five FT-like genes and functional analysis of PhFT-1 in a Phalaenopsis hybrid

    Get PDF
    Background: Phalaenopsis is an important ornamental flowering plant that belongs to the Orchidaceae family and is cultivated worldwide. Phalaenopsis has a long juvenile phase; therefore, it is important to understand the genetic elements regulating the transition from vegetative phase to reproductive phase. In this study, FLOWERING LOCUS T (FT) homologs in Phalaenopsis were cloned, and their effects on flowering were analyzed. Results: A total of five FT-like genes were identified in Phalaenopsis. Phylogenetic and expression analyses of these five FT-like genes indicated that some of these genes might participate in the regulation of flowering. A novel FT-like gene, PhFT-1, distantly related to previously reported FT genes in Arabidopsis and other dicot crops, was also found to be a positive regulator of flowering as heterologous expression of PhFT-1 in Arabidopsis causes an early flowering phenotype. Conclusions: Five FT homologous genes from Phalaenopsis orchid were identified, and PhFT-1 positively regulates flowering

    Interfacial ā€œSingleā€Atomā€inā€Defectsā€ Catalysts Accelerating Li + Desolvation Kinetics for Longā€Lifespan Lithiumā€Metal Batteries

    Get PDF
    The lithium-metal anode is a promising candidate for realizing high-energy-density batteries owing to its high capacity and low potential. However, several rate-limiting kinetic obstacles, such as the desolvation of Li+ solvation structure to liberate Li+^+, Li0^0 nucleation, and atom diffusion, cause heterogeneous spatial Li-ion distribution and fractal plating morphology with dendrite formation, leading to low Coulombic efficiency and depressive electrochemical stability. Herein, differing from pore sieving effect or electrolyte engineering, atomic iron anchors to cation vacancy-rich Co1āˆ’xS_{1āˆ’xS} embedded in 3D porous carbon (SAFe/CVRCS@3DPC) is proposed and demonstrated as catalytic kinetic promoters. Numerous free Li ions are electrocatalytically dissociated from the Li+^+ solvation complex structure for uniform lateral diffusion by reducing desolvation and diffusion barriers via SAFe/CVRCS@3DPC, realizing smooth dendrite-free Li morphologies, as comprehensively understood by combined in situ/ex situ characterizations. Encouraged by SAFe/CVRCS@3DPC catalytic promotor, the modified Li-metal anodes achieve smooth plating with a long lifespan (1600 h) and high Coulombic efficiency without any dendrite formation. Paired with the LiFePO4_4 cathode, the full cell (10.7 mg cmāˆ’2^{āˆ’2}) stabilizes a capacity retention of 90.3% after 300 cycles at 0.5 C, signifying the feasibility of using interfacial catalysts for modulating Li behaviors toward practical applications

    Accelerated Liāŗ Desolvation for Diffusion Booster Enabling Lowā€Temperature Sulfur Redox Kinetics via Electrocatalytic Carbonā€Grazftedā€CoP Porous Nanosheets

    Get PDF
    Lithiumā€“sulfur (Liā€“S) batteries are famous for their high energy density and low cost, but prevented by sluggish redox kinetics of sulfur species due to depressive Li ion diffusion kinetics, especially under low-temperature environment. Herein, a combined strategy of electrocatalysis and pore sieving effect is put forward to dissociate the Li+ solvation structure to stimulate the free Li+ diffusion, further improving sulfur redox reaction kinetics. As a protocol, an electrocatalytic porous diffusion-boosted nitrogen-doped carbon-grafted-CoP nanosheet is designed via forming the NCoP active structure to release more free Li+ to react with sulfur species, as fully investigated by electrochemical tests, theoretical simulations and in situ/ex situ characterizations. As a result, the cells with diffusion booster achieve desirable lifespan of 800 cycles at 2 C and excellent rate capability (775 mAh gāˆ’1 at 3 C). Impressively, in a condition of high mass loading or low-temperature environment, the cell with 5.7 mg cmāˆ’2 stabilizes an areal capacity of 3.2 mAh cmāˆ’2 and the charming capacity of 647 mAh gāˆ’1 is obtained under 0 Ā°C after 80 cycles, demonstrating a promising route of providing more free Li ions toward practical high-energy Liā€“S batteries

    Single-pixel computational ghost imaging with helicity-dependent metasurface hologram

    Get PDF
    A helicity-dependent computational ghost image generated by a metasurface hologram offers a promising optical encryption scheme.</jats:p

    Integrative proteomic and metabonomic profiling elucidates amino acid and lipid metabolism disorder in CA-MRSA-infected breast abscesses

    Get PDF
    ObjectiveBacterial culture and drug sensitivity testing have been the gold standard for confirming community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infection in breast abscess with a long history. However, these tests may delay treatment and increase the risk of nosocomial infections. To handle and improve this critical situation, this study aimed to explore biomarkers that could facilitate the rapid diagnosis of CA-MRSA infection.MethodsThis study for the first time applied label-free quantitative proteomics and non-targeted metabonomics to identify potential differentially expressed proteins (DEPs) and differentially expressed metabolites (DEMs) in breast abscess infected with CA-MRSA compared to methicillin-susceptible S. aureus (MSSA). The two omics data were integrated and analyzed using bioinformatics, and the results were validated using Parallel Reaction Monitoring (PRM). Receiver operating characteristic (ROC) curves were generated to evaluate the predictive efficiency of the identified biomarkers for diagnosing CA-MRSA infection.ResultsAfter using the above-mentioned strategies, 109 DEPs were identified, out of which 86 were upregulated and 23 were downregulated. Additionally, a total of 61 and 26 DEMs were initially screened in the positive and negative ion modes, respectively. A conjoint analysis indicated that the amino acid metabolism, glycosphingolipid biosynthesis, and glycerophospholipid metabolism pathways were co-enriched by the upstream DEPs and downstream DEMs, which may be involved in structuring the related network of CA-MRSA infection. Furthermore, three significant DEMs, namely, indole-3-acetic acid, L-(āˆ’)-methionine, and D-sedoheptulose 7-phosphate, displayed good discriminative abilities in early identification of CA-MRSA infection in ROC analysis.ConclusionAs there is limited high-quality evidence and multiple omics research in this field, the explored candidate biomarkers and pathways may provide new insights into the early diagnosis and drug resistance mechanisms of CA-MRSA infection in Chinese women

    Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isothiocyanates are natural compounds found in consumable cruciferous vegetables. They have been shown to inhibit chemical carcinogenesis by a wide variety of chemical carcinogens in animal models. Recent studies have also shown that isothiocyanates have antitumor activity, inhibiting the growth of several types of cultured human cancer cells. Our previous study showed that PEITC inhibited human leukemia cells growth by inducing apoptosis. However, the effect of isothiocyanates on lung cancer cell metastasis has not been studied. In the present study, we investigated the inhibitory effects of BITC and PEITC on metastatic potential of highly metastatic human lung cancer L9981 cells.</p> <p>Methods</p> <p>Cell migration and invasion were measured by wound healing assay and transwell chemotaxis assay. Expression of metastasis-related genes was assessed by quantitative RT-PCR and Western blotting. The mechanisms of action were evaluated by flow cytometry, reporter assay and Western blotting.</p> <p>Results</p> <p>Our data showed that both BITC and PEITC inhibited L9981 cell growth in a dose-dependent manner, the IC50 values were 5.0 and 9.7 Ī¼M, respectively. Cell migrations were reduced to 8.1% and 16.5% of control, respectively; and cell invasions were reduced to 2.7% and 7.3% of control, respectively. Metastasis-related genes MMP-2, Twist and Ī²-catenin were also modulated. BITC and PEITC inhibited cell survival signaling molecules Akt and NFĪŗB activation. Moreover, BITC and PEITC increased ROS generation and caused GSH depletion. Pretreatment with NAC blocked BITC and PEITC induced ROS elevation and NFĪŗB inhibition.</p> <p>Conclusion</p> <p>Our results indicated that BITC and PEITC suppress lung cancer cell metastasis potential by modulation of metastasis-related gene expression, inhibition of Akt/NFĪŗB pathway. Induction of oxidative stress may play an important role.</p
    • ā€¦
    corecore