229 research outputs found

    D=2 N=(2,2) Semi Chiral Vector Multiplet

    Full text link
    We describe a new 1+1 dimensional N=(2,2) vector multiplet that naturally couples to semi chiral superfields in the sense that the gauged supercovariant derivative algebra is only consistent with imposing covariantly semi chiral superfield constraints. It has the advantages that its prepotentials shift by semi chiral superfields under gauge transformations. We also see that the multiplet relates the chiral vector multiplet with the twisted chiral vector multiplet by reducing to either multiplet under appropriate limits without being reducible in terms of the chiral and twisted chiral vector multiplet. This is explained from the superspace geometrical point of view as the result of possessing a symmetry under the discrete supercoordinate transformation that is responsible for mirror copies of supermultiplets. We then describe how to gauge a non linear sigma model with semi chiral superfields using the prepotentials of the new multiplet.Comment: 15 page

    Linearizing Generalized Kahler Geometry

    Full text link
    The geometry of the target space of an N=(2,2) supersymmetry sigma-model carries a generalized Kahler structure. There always exists a real function, the generalized Kahler potential K, that encodes all the relevant local differential geometry data: the metric, the B-field, etc. Generically this data is given by nonlinear functions of the second derivatives of K. We show that, at least locally, the nonlinearity on any generalized Kahler manifold can be explained as arising from a quotient of a space without this nonlinearity.Comment: 31 pages, some geometrical aspects clarified, typos correcte

    Generalized Kahler geometry and gerbes

    Full text link
    We introduce and study the notion of a biholomorphic gerbe with connection. The biholomorphic gerbe provides a natural geometrical framework for generalized Kahler geometry in a manner analogous to the way a holomorphic line bundle is related to Kahler geometry. The relation between the gerbe and the generalized Kahler potential is discussed.Comment: 28 page

    Euclidean Supersymmetry, Twisting and Topological Sigma Models

    Full text link
    We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N=2, the R-symmetry is SO(2)\times SO(1,1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N=2 models with H-flux so that the target geometry is generalised Kahler, it is necessary to work with a complexification of the sigma models. These issues are related to the obstructions to the existence of non-trivial twisted chiral superfields in Euclidean superspace.Comment: 8 page

    Gauged (2,2) Sigma Models and Generalized Kahler Geometry

    Get PDF
    We gauge the (2,2) supersymmetric non-linear sigma model whose target space has bihermitian structure (g, B, J_{\pm}) with noncommuting complex structures. The bihermitian geometry is realized by a sigma model which is written in terms of (2,2) semi-chiral superfields. We discuss the moment map, from the perspective of the gauged sigma model action and from the integrability condition for a Hamiltonian vector field. We show that for a concrete example, the SU(2) x U(1) WZNW model, as well as for the sigma models with almost product structure, the moment map can be used together with the corresponding Killing vector to form an element of T+T* which lies in the eigenbundle of the generalized almost complex structure. Lastly, we discuss T-duality at the level of a (2,2) sigma model involving semi-chiral superfields and present an explicit example.Comment: 33 page

    Numerical relativity and high energy physics: Recent developments

    Get PDF
    We review recent progress in the application of numerical relativity techniques to astrophysics and high-energy physics. We focus on some developments that took place within the "Numerical Relativity and High Energy Physics" network, a Marie Curie IRSES action that we coordinated, namely: spin evolution in black hole binaries, high-energy black hole collisions, compact object solutions in scalar-tensor gravity, superradiant instabilities and hairy black hole solutions in Einstein's gravity coupled to fundamental fields, and the possibility to gain insight into these phenomena using analog gravity models.This is the final version of the article. It first appeared from World Scientific via https://doi.org/ 10.1142/S021827181641022

    T-duality and Generalized Complex Geometry

    Get PDF
    We find the explicit T-duality transformation in the phase space formulation of the N=(1,1) sigma model. We also show that the T-duality transformation is a symplectomorphism and it is an element of O(d,d). Further, we find the explicit T-duality transformation of a generalized complex structure in this model. We also show that the extended supersymmetry of the sigma model is preserved under the T-duality.Comment: 18 pages; added references; published versio

    Topological twisted sigma model with H-flux revisited

    Full text link
    In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the B-field. We then discuss the topological feature of the model.Comment: 16 pages. Appendix adde

    NS-NS fluxes in Hitchin's generalized geometry

    Get PDF
    The standard notion of NS-NS 3-form flux is lifted to Hitchin's generalized geometry. This generalized flux is given in terms of an integral of a modified Nijenhuis operator over a generalized 3-cycle. Explicitly evaluating the generalized flux in a number of familiar examples, we show that it can compute three-form flux, geometric flux and non-geometric Q-flux. Finally, a generalized connection that acts on generalized vectors is described and we show how the flux arises from it.Comment: 21 pages, 1 figure; v3: minor change

    T-duality and Generalized Kahler Geometry

    Full text link
    We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-strengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.Comment: 14 pages; published version: some conventions improved, minor clarification
    • …
    corecore