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1. Introduction

The last global meeting of the Numerical Relativity and High Energy Physics net-
work — a Marie Curie International Research Staff Exchange Scheme (IRSES)
partnership (2012–2015) funded by the European Union and coordinated by the
authors of this paper — started in Belém (Brazil) on 28 September 2015. Every-
one in attendance, as well as the large majority of the scientific community, was
unaware that a major breakthrough in science had just taken place: precisely two
weeks earlier, the LIGO/Virgo collaboration observed the first gravitational-wave
(GW) signal from the merger of two black holes (BHs).1

The detection relied on decades of technological efforts to perform an appar-
ently impossible measurement, corresponding to displacements that are ∼103 times
smaller than the atomic nucleus. The unambiguous interpretation of the signal
observed by Advanced LIGO as a BH binary coalescence was also the result of a
decades-long effort: it took over 40 years to numerically solve Einstein’ equations
of general relativity (GR) and to understand the behavior of BH binaries through
their inspiral, merger and ringdown.

A toolbox of powerful techniques became available after the numerical relativity
breakthrough that took place in 2005.2–4 This naturally led to a community effort
looking for applications of these tools both in astrophysics5 and beyond.6,7 The
area at the interface between numerical relativity and high-energy physics has made
impressive strides in the recent past. A comprehensive review is beyond the scope
of this paper, where we will focus on our own efforts in this emerging research
field.

The plan of the paper is as follows. We will start in Sec. 2 by considering
BH collisions, first in astrophysics (paying particular attention to some recent
developments concerning spin dynamics), and then in the context of fundamen-
tal and high-energy physics (with applications to large extra dimension scenarios
and to the gauge gravity duality). In Sec. 3, we will look at compact objects —
i.e. BHs and neutron stars (NSs) — in alternative theories of gravity, focusing on
models with scalar degrees of freedom in the gravitational sector: tensor-(multi)-
scalar theories, Horndeski gravity and Einstein-dilaton-Gauss–Bonnet gravity. In
Sec. 4, we will consider GR minimally coupled to fundamental scalar and ten-
sor fields and present some remarkable results obtained in the last few years in
these simple models, including new types of numerical BH solutions that defied
common lore. The existence of these BHs with scalar or Proca hair is inti-
mately related with the complex phenomenon of superradiance, that can occur
for rotating and charged BHs. Numerical relativity techniques have been (and
will be) instrumental in probing the dynamics of these objects. Section 5 looks
at many of these phenomena (in particular those discussed in Sec. 4) from a
different perspective: that of analog gravity models. We close with some brief
remarks.
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2. Black Hole Collisions: Numerical and Analytical Studies

Collisions of BHs have been modeled using analytic and numerical techniques for
several decades. One of the main motivations throughout this time has been the
significance of merging BH binary systems as one of the strongest sources for direct
detection of GWs. The recent breakthrough detection by Advanced LIGO of the
event called GW1509141 indeed observed the late stages of a BH binary inspiral,
including merger and ringdown; for an overview of the system’s parameters see also
Ref. 8. This event clearly marks a revolution in our observational studies of the
Universe.9,10 Astrophysical BH binary mergers form a key motivation for the work
reviewed here. Additionally to this new era in gravitational astrophysics, many
developments in theoretical physics, particularly during the past two decades, add
substantial motivation to the modeling of BH collisions from other angles,7,11,12

and make BHs one of the center-stage actors in contemporary physics.
A BH is the closest analog in GR to the concept of a point mass in Newtonian

physics, and spacetimes containing two BHs represent the simplest version of the
two-body problem in GR. Unlike their Newtonian counterparts, however, binary BH
spacetimes have substantially more complex dynamics: BHs have “internal struc-
ture” in the form of spin, and their interaction in a binary leads to GW emission.
Therefore, it should come as no surprise that these spacetimes cannot be described
by exact solutions in closed analytic form, analogous to the Keplerian orbits in New-
tonian physics. For this reason, most theoretical modeling resorts to approximation
methods, such as post-Newtonian theory,13,14 perturbation theory15 or the point-
particle approximation.16 In alternative to these approaches, which approximate
the theory, numerical relativity generates solutions to the full nonlinear equations,
approximating them via some form of discretization.17–19 The decades-long efforts
of numerical relativity culminated in the 2005 breakthroughs performing the first
evolutions of binary BHs through inspiral, merger and ringdown2–4; for a historical
perspective on this milestone see, e.g. Ref. 20.

The contemporary modeling of BH collisions in the context of astrophysics, GW
physics and high-energy physics relies on a combination of all these analytic and
numerical methods. The purpose of this section is to review some of the most recent
and exciting developments.

2.1. Astrophysical black holes and gravitational waves

The modeling of BH binaries as astrophysical sources of GWs has mostly focused on
systems in quasi-circular orbits because the emission of GWs rapidly carries away
excess angular momentum from the binary.21 By the time a binary has reached the
frequency window of GW detectors such as Advanced LIGO and Advanced Virgo,
the orbital eccentricity is very close to zero. This efficient elimination of eccentricity
relies, of course, on the absence of any significant interaction with matter or third
bodies. The possible effects of nonvanishing eccentricity have been investigated by
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several analytical and numerical studies.22–31 Quasi-circular inspirals remain the
most likely and best understood scenario, so here, we shall concentrate on this
case. We will also focus on binaries in the framework of GR, but we note that there
are preliminary explorations of scalar radiation from BH binaries in scalar–tensor
theory, triggered either by nonasymptotically flat boundary conditions32 or by a
nonvanishing potential.33

The estimation of source parameters in GW observations employs a method
called matched filtering where the data stream is compared with a catalog of theo-
retically predicted GW templates34; for an application of this technique to hybrid
waveforms constructed out of numerical relativity and PN calculations see for exam-
ple Ref. 35. A main challenge for the theoretical community is the generation of such
template catalogs covering with high accuracy the whole range of BH binary masses
and spins. Given the high computational cost of numerical relativity simulations,
this construction typically stitches together post-Newtonian and numerical relativ-
ity waveforms,36–38 or employs numerical simulations to calibrate free parameters
in analytic prescriptions such as the effective-one-body model.39–42

BH binaries with generic spins will undergo spin precession during which the
orbital plane changes orientation. The modeling of these systems is significantly
more involved than that of their nonprecessing counterparts, but benefits enor-
mously from the presence of three distinctly different timescales. If we denote by
r the separation of the two constituent BHs, these orbit around each other on
the orbital timescale torb ∝ r3/2, while the spin directions change on the pre-
cession timescale tpre ∝ r5/2, and the emission of GWs reduces the separation
r on the radiation reaction timescale tRR ∝ r4. At sufficiently large separation
r, this implies the hierarchy torb � tpre � tRR. The first inequality has been
used to derive orbit-averaged evolution equations for the individual spin vectors Si

(i = 1, 2) from Ṡi = Ωi×Si, where the precession frequency depends on the orbital
angular momentum L and the Si, but not on the separation vector r.43–45 This
quasi-adiabatic approach has been combined with some additional simplifications
for the precession dynamics in order to construct template banks for precessing
binaries. These techniques include a single effective spin model, modifications to
the stationary-phase approximation, or the use of nonprecessing templates modu-
lated through an effective precession parameter.46–51 Orbit-averaged PN calcula-
tions have also been employed in the discovery of spin–orbit resonances52 and for
predictions of the final spins and recoil in BH binary mergers.53–55

The success of the orbit-averaging procedure relies heavily on the analytic solu-
tions for Keplerian orbits that are employed in the averaging over the orbital
timescale. Until recently, no analogous analytic solution was known for the pre-
cession equations, so that the second inequality of the above hierarchy, torb � tRR,
has not been brought to the same level of fruition. This picture changed with the
identification of analytic solutions on the precessional timescale.56,57 Consider for
this purpose a BH binary with orbital angular momentum L, individual masses mi

and spin vectors Si, i = 1, 2 and mass ratio q = m2/m1 ≤ 1. For fixed mass ratio,
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the system is described by nine parameters, three each for S1, S2 and L. Conser-
vation of the spin magnitudes Si reduces this number to seven. On the precession
timescale, the total angular momentum J ≡ S1 + S2 + L as well as the magnitude
L are also conserved at the PN orders considered here, leaving three numbers to
determine the state of the binary. A convenient choice for these variables is given
by the angles θi between the individual spins and the orbital angular momentum
vector and the angle ∆Φ between the projections of the individual spins onto the
orbital plane: cf. e.g. Fig. 1 in Ref. 57. One further variable can be eliminated
through a convenient choice of a noninertial frame. Finally, the projected effective
spin defined by58,59

ξ ≡ (m1 +m2)−2[(1 + q)S1 + (1 + q−1)S2] · L

L
, (1)

is conserved by the orbit-averaged spin-precession equations at 2PN order, and even
under radiation reaction at 2.5PN order. Spin precession at this order is therefore
described in terms of a single evolution variable, conveniently chosen to be the
magnitude of the total spin S ≡ |S1 + S2|.

For a BH binary with specified parameters and separation, i.e. fixed values
mi, Si, L, J, ξ, the precession is described completely in terms of the variable S.
The set of physically allowed systems can then be represented as the area inside a
closed loop constructed from two “effective potentials” ξ±(S) in the (S, ξ) plane.
The functions ξ±(S) are determined by the physical constraints on the spin and
angular momenta

Smin = max(|J − L|, |S1 − S2|),
Smax = min(J + L, S1 + S2),

(2)

Jmin = max(0, L− S1 − S2, |S1 − S2| − L),

Jmax = L+ S1 + S2

(3)

and are given in closed analytic form by Eq. (14) in Ref. 57. For a given value of
ξ inside the range compatible with these constraints, this implies that S oscillates
between two extrema S±, where Smin ≤ S− ≤ S+ ≤ Smax.a All remaining variables
of the binary can be obtained from S through Eqs. (20) in Ref. 57 for θ1, θ2 and
∆Φ which, in turn, determine all other physical variables.

A particularly intriguing consequence of this formulation of the spin precession
dynamics is that all binaries fall into one of three morphologies, which are best
characterized by the behavior of the angle ∆Φ on the precession time scale. As
the variable S oscillates inside its allowed range, ∆Φ either (i) librates around 0,
(ii) librates around π, or (iii) circulates through the entire range ∆Φ ∈ [−π, π].

aThe resonance configurations of Ref. 52 correspond to the maximal and minimal allowed values of
ξ in this area, ξmax and ξmin, at which S− = S+ and, hence, S remains constant on the precession
timescale; cf. Fig. 2 in Ref. 57.
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As the binary inspirals on the much larger radiation reaction timescale, the orbital
and total angular momentum evolve, and the binary may undergo phase transitions
between these morphologies. The inspiral of the binary under GW emission can be
modeled in a remarkably efficient manner at 1PN order, if we express the binary
separation r in terms of the orbital angular momentum L given by the Newtonian
expression L = η(rM3)1/2, where M ≡ m1 +m2 and η ≡ m1m2/(m1 +m2) is the
symmetric mass ratio parameter. The evolution of the total angular momentum J

averaged over a precession cycle is then given by57〈
dJ

dL

〉
=

1
2LJ

(J2 − L2 − 〈S2〉pre), (4)

where

〈S2〉pre =
2
τ

∫ S+

S−
S2 dS∣∣∣∣dSdt

∣∣∣∣
, τ ≡ 2

∫ S+

S−

dS∣∣∣∣dSdt
∣∣∣∣
, (5)

dS

dt
= −3(1 − q2)

2q
S1S2

S

(η2M3)3

L5

(
1 − ηM2ξ

L

)
sin θ1 sin θ2 sin ∆Φ. (6)

The inspiral of precessing BH binaries is thus modeled in terms of a single ordinary
differential equation (4) which, thanks to the precession-averaging procedure, can
furthermore be solved numerically using much larger timesteps than possible in
a formulation using only orbit-averaged variables. By suitably compactifying the
variables involved, accurate numerical evolutions from infinite separations become
possible at drastically reduced computational cost. The formalism truly bridges
the gap between astrophysical BH separations and the regime close to merger,
where numerical relativity predictions for BH kicks are valid. Further applications
of the formalism identified a precessional instability of binaries where the spin of
the more (less) massive BH is (anti) aligned with the orbital angular momentum,60

and highlighted how the precessional morphology may carry a memory of the astro-
physical processes that formed the binary.57,61 Preliminary studies of the potential
of present and future GW detectors to determine the morphologies in BH obser-
vations are encouraging, except for highly symmetric binaries, where precessional
effects are suppressed.62,63

2.2. Black hole collisions, fundamental and high-energy physics

Even 100 years after its publication, GR still confronts us with some of the most
important questions in contemporary physics. As described in Sec. 4, astrophysi-
cal and cosmological observations suggest the presence of an enigmatic dark sector
which appears to dominate the gravitational dynamics of much of our universe. At
an even more fundamental level, GR predicts the limits of its own range of valid-
ity. Seminal work by Hawking and Penrose64–66 demonstrated that gravitational
collapse in the framework of GR leads to singularities under generic initial condi-
tions. The appearance of infinities in the theory is expected to be cured by a future
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quantum theory of gravitation. Quite remarkably, however, relativity appears to
have a built-in protection mechanism against the potentially fatal consequences of
spacetime singularities; according to Penrose’s cosmic censorship conjecture,67–69

the singularities do not appear in naked form for physically realistic, generic initial
data, but instead are cloaked inside horizons which causally disconnect the exte-
rior spacetime from being influenced by the singularity.b A natural question then
arising in the study of BH collisions is whether these can violate the conjecture as
for example in the form of a super extremal Kerr BH generated in ultrarelativistic
collisions. According to Thorne’s hoop conjecture,70 BH horizons should further-
more form (in D = 4 spacetime dimensions) whenever a physical system of mass M
gets compacted inside a region with circumference � 2πRs, where Rs = 2M is the
Schwarzschild radius associated with M . The conjecture has also been generalized
to higher dimensions.71

A particularly intriguing consequence arising from the hoop conjecture is the
possibility of BH formation in proton–proton collisions at colliders such as the LHC,
or in cosmic-ray showers hitting the Earth’s atmosphere. In the trans-Planckian
regime, where the colliding partons can be approximated as classical particles,
the hoop conjecture predicts formation of a BH if the boost parameter γ satis-
fies γ � c4R/(4Gm0), i.e. if two particles of rest mass m0 with center-of-mass
energy M = 2γm0 get compacted inside a volume of radius ∼ R. Taking the radius
to be given by the de Broglie wavelength hc/M associated with the center-of-mass
energy, the condition for BH formation becomes72 (up to factors of order unity)
M � EP =

√
�c5/G, i.e. the center-of-mass energy of the collision must exceed the

Planck energy. At the four-dimensional (4D) standard-model value Ep ∼ 1019 GeV,
experimental tests of BH formation are clearly out of the range of present and fore-
seeable colliders. The so-called TeV gravity scenarios involving large or warped
extra dimensions,73–76 however, provide an appealing explanation of the hierarchy
problem of physics and may lower the effective Planck energy to values as low as the
TeV regime, which would allow for the possibility to form BHs in particle collisions
at the LHC77,78; for reviews see Refs. 79–81. Simulations of BH collisions can pro-
vide important information about the cross-section and energy loss through GWs
which form key input for the Monte Carlo generators employed in the analysis of
experimental data.77,82

Yet another rich area of applying BH studies has emerged in the context of the
gauge-gravity duality, often also referred to as the AdS/CFT correspondence,83–85

which states the equivalence between string theory in asymptotically AdS space-
times (times a compact space) and conformal field theories living on the AdS bound-
ary. The duality provides a new approach to the (notoriously difficult) modeling of
physical systems in strongly coupled gauge theories in terms of classical spacetimes,

bThis hypothesis is sometimes referred to as weak cosmic censorship and independent of the strong
version that conjectures the inextendibility of the maximal cauchy development of generic compact
or asymptotically flat initial data.
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often involving BHs, that are one dimension higher and asymptote to AdS at infinite
radius.

We will next review some of the recent developments in BH modeling in the
context of these topics, but we note that there are several more comprehensive
reviews on these subjects.6,7,11,86

The hoop conjecture has been tested in the context of high-speed collisions
of scalar-field72 and fluid-ball configurations.87,88 In all these simulations, BH for-
mation is observed at high velocities, consistent with the prediction of the hoop
conjecture. In high-energy collisions, most of the center-of-mass energy is present
in the form of the colliding object’s kinetic energy. At sufficiently large velocities,
this energy will be large enough to meet the conditions of the hoop conjecture
and the colliding objects will appear as BHs. The hoop conjecture thus supports
the idea that parton–parton collisions can be well modeled by colliding BHs, the
GR analog of point particles. High-energy collisions have been studied most com-
prehensively in D = 4 spacetime dimensions and revealed a number of intriguing
features. Numerical simulations of equal-mass, nonspinning BHs colliding head-on
predict89 that in the ultrarelativistic limit a fraction of 14±3% (recently confirmed
and refined to 13 ± 1% by the RIT group90) of the total energy is radiated in
GWs. This value is about half of Penrose’s upper limit,91,92 and in good agreement
with the value of 16.4% obtained in second-order perturbative calculations on a
background composed of two superposed Aichelburg–Sexl shock waves.93–101

In grazing collisions, the BHs are allowed to approach each other with a non-
zero impact parameter b, and the outcome of the collision depends on whether
this parameter exceeds a threshold value or not. This scattering threshold bscat
separates configurations that result in the formation of a single BH (b < bscat) or in
the constituents scattering off each other to infinity (b > bscat), and was shown to
be approximately given as a function of the collision speed v and the center-of-mass
energy Mc2 by the remarkably simple formula102

bscat ≈ 2.5
GM

cv
. (7)

Numerical simulations103 furthermore identified the presence of zoom-whirl
orbits104 in a regime where b is close to a critical value b∗ � bscat. The energy
released in GWs in these grazing collisions can be enormous, exceeding 35% of
the total energy. Extrapolation to the speed of light, however, demonstrates that the
maximum energy saturates at about half of the total (i.e. kinetic) energy.105 The
remaining kinetic energy, instead, ends up as rest mass, either in the single BH
resulting from merger or in the two constituents in scattering configurations.
Simulations of rotating BHs105 also demonstrate that the impact of the spin on
the collision dynamics is washed out in the limit v → c. We find here another
confirmation of the “matter does not matter” conjecture already encountered in
scalar-field and fluid-ball collisions72,87,88: Ultrarelativistic collisions are dominated
by the kinetic energy, so that the internal structure of the colliding objects becomes
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irrelevant for the collision process. Further evidence for this conjecture has recently
been obtained in numerical studies of unequal-mass BH collisions. Head-on collisions
of this type emit ∼13% of the total mass in the form of GWs in the ultrarelativistic
limit, in excellent agreement with the equal-mass result mentioned above.106

It remains to be seen whether this picture remains intact as electric charge is
added to the colliding particles. Collisions of electrically charged BHs have so far
considered only the low-velocity regime, and revealed qualitatively similar dynam-
ics as for the case of neutral BHs.107 As intuitively expected, however, the collision
is slowed down in the case of equal electric charges, reducing the energy radiated
in electromagnetic and GWs as the charge-to-mass ratio approaches the critical
value Q/M = 1. Conversely, the collision is accelerated by the additional attrac-
tive force between the BHs if they carry opposite charges, which increases the
GW radiation by a factor of ∼2.7 as the charge-to-mass ratio |Q|/M increases
from 0 to 0.99.108 The electromagnetic radiation becomes dominant in these col-
lisions at |Q|/M ∼ 0.37 and exceeds its GW counterpart by a factor ∼5.8 when
|Q|/M = 0.99.

The high-energy collision of particles has also attracted considerable interest
in a more astrophysical context through the collisional Penrose process.109 Parti-
cle collisions near rapidly rotating BHs could in principle lead to arbitrarily large
center-of-mass energies,110 but there are several caveats on the astrophysical viabil-
ity of this process.111–113 The significance of such collisions is limited, in particular,
by the redshift experienced by particles escaping from the near-horizon area to
observers far away from the source.114,115 An interesting possibility is that one of
the colliding particles could have outgoing radial momentum: this can happen either
because the particle reaches a turning point in the orbit,116 or by allowing at least
one outgoing particle to be generated close to the BH via previous collisions.117

In both cases, the efficiency of the process (i.e. the ratio of the escaping particle’s
energy to the sum of the pre-collision particles’ energies) can reach values as large
as ∼13.9.118,119

Collisions of BHs in D > 4 spacetime dimensions are not as well understood
as the D = 4 case, mostly because of difficulties arising in the numerical stability
of the simulations. The most extensive exploration of BH collisions in D = 5 was
able to determine the scattering threshold in grazing collisions at velocities up to
v ≈ 0.6 c.120 This study used the so-called modified Cartoon method121–125 and iden-
tified regions of exceptionally high curvature above the Planck regime that are not
hidden inside a BH horizon. These regions with curvature radius below the Planck
length are realized during the close encounter of two BHs in scattering configura-
tions. The emission of GWs in D = 5 has been analyzed in head-on collisions of
nonspinning BHs starting from rest.126,127 It predicts Erad/M = (0.089±0.006)%
for equal masses and a monotonic decrease, in good agreement with point particle
approximations, as the mass ratio is lowered from q = 1 to smaller values. The
numerical method of this work is based on a dimensional reduction by isometry,128

analogous to the Geroch decomposition.129 Results from the two different codes
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have been compared in D = 5, demonstrating excellent agreement.130 This work
also provided the first estimate in D = 6, where equal-mass head-on collisions
yield Erad/M = (0.081± 0.004)%. All these studies assume rotational symmetry in
planes involving the extra dimensions such that the effective computational domain
remains three-dimensional (3D). These symmetry assumptions still accommodate
most of the scenarios relevant in the context of testing TeV gravity or fundamental
properties of BH spacetimes.

Perturbative calculations based on superposed shock waves have also been
extended to D ≥ 5 dimensions, including nonzero impact parameters.92,131,132

These calculations predict a significant increase of the threshold impact param-
eter for formation of a common apparent horizon relative to the 4D case; see, in
particular, Table 2 in Ref. 132. Extension of the work by d’Eath and Payne for the
head-on case to D ≥ 5 resulted in a remarkably simple expression at first perturba-
tive order for the energy fraction radiated in GWs96,97: Erad/M = 1/2− 1/D. This
result, originally obtained in a numerical study, has more recently been confirmed
analytically to be exact at first-order.100

The modeling of shock-wave and BH collisions is significantly more complicated
in asymptotically AdS spacetimes. In contrast to the asymptotically flat case, the
outer boundary now causally affects the interior. The use of large but finite com-
putational domains, as often done in the modeling of asymptotically flat space-
times, does not adequately capture this effect, so that incorporation of spacelike
and/or null infinity, e.g. through compactification, becomes mandatory. The sin-
gular behavior of the metric components at the boundary furthermore requires
careful numerical handling to avoid the generation of nonassigned numbers in the
simulations. See, for example, Refs. 133 and 134 for a discussion of the numeri-
cal methods developed to handle these issues. Over the past decade, substantial
progress has been made in overcoming these difficulties, achieving the first collision
of BHs in an asymptotically AdS spacetime135 (see also Ref. 136 for an earlier toy
model). Numerical simulations of shock waves and BHs have clearly demonstrated
their capacity for obtaining new insight into the strongly coupled regime of gauge
theories. These studies have addressed in particular the thermalization of quark–
gluon plasma in the heavy-ion collisions performed for example at the Brookhaven
RHIC collider. Estimates for the thermalization time, i.e. the time after which
the plasma reaches thermal equilibrium, obtained through the AdS/CFT corre-
spondence are ∼0.35 fm/c, in good agreement with experimental data.137–140 As in
the asymptotically flat case, point-particle and perturbative calculations provide a
convenient tool complementing full numerical relativity studies.141,142 For a more
extended discussion of BH and shock wave collisions in AdS, we refer the reader
to Ref. 7.

Finally, we remark that BH collisions in asymptotically de Sitter spacetimes
have been considered as tests of the cosmic censorship conjecture. The numerical
simulations support the conjecture.143
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3. Compact Objects in Modified Theories of Gravity

In this section, we will discuss isolated compact objects (BHs and NSs) in modified
theories of gravity. We will focus on one of the most natural and best studied exten-
sions of GR: scalar–tensor gravity, in which one or more scalar degrees of freedom
are included in the gravitational sector through a nonminimal coupling.144–149

We will discuss compact objects in these theories at increasing levels of complex-
ity, starting from the “standard” Bergmann–Wagoner formulation (Sec. 3.1) and
then considering extensions to multiple scalar fields (Sec. 3.2), Horndeski gravity
(Sec. 3.3) and Einstein-dilaton-Gauss–Bonnet gravity (Sec. 3.4).

3.1. “Bergmann–Wagoner” scalar–tensor theories

The most general action of scalar–tensor gravity, at most quadratic in derivatives of
the fields and with one scalar field, was studied by Bergmann and Wagoner.150,151

The action of this theory can be written (with an appropriate field redefinition) as:

S =
1

16π

∫
d4x

√−g
[
φR − ω(φ)

φ
gµν∂µφ∂νφ− U(φ)

]
+ SM [Ψ, gµν ], (8)

where U(φ) and ω(φ) are arbitrary functions of the scalar field φ, and SM is the
action of the matter fields Ψ. When U(φ) = 0 and ω(φ) = ωBD is constant, the
theory reduces to (Jordan–Fierz-)Brans–Dicke gravity.152–154

The Bergmann–Wagoner theory (8) can be expressed in a different form through
a scalar field redefinition ϕ = ϕ(φ) and a conformal transformation of the metric
gµν → g�

µν = A−2(ϕ)gµν . In particular, fixing A(ϕ) = φ−1/2, the Jordan-frame
action (8) transforms into the Einstein-frame action

S =
1

16π

∫
d4x

√−g�[R� − 2g�µν∂µϕ∂νϕ− V (ϕ)] + SM [Ψ, A2(ϕ)g�
µν ], (9)

where g� and R� are the determinant and Ricci scalar of g�
µν , respectively, and the

potential V (ϕ) ≡ A4(ϕ)U(φ(ϕ)). The price paid for the minimal coupling of the
scalar field in the gravitational sector is the nontrivial coupling in the matter sector
of the action: particle masses and fundamental constants depend on the scalar field.

The actions (8) and (9) are just different representations of the same the-
ory,155,156 so it is legitimate (and customary) to choose the conformal frame in which
calculations are simpler. For instance, in vacuum the Einstein-frame action (9) for-
mally reduces to the GR action minimally coupled with a scalar field. It may then
be necessary to change the conformal frame when extracting physically meaning-
ful statements (since the scalar field is minimally coupled to matter in the Jordan
frame, test particles follow geodesics of the Jordan-frame metric, not of the Einstein-
frame metric). The relation between Jordan-frame and Einstein-frame quantities is
simply φ = A−2(ϕ), 3 + 2ω(φ) = α(ϕ)−2, where α(ϕ) ≡ d(lnA(ϕ))/dϕ.157
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Many phenomenological studies neglect the scalar potential, setting U(φ) = 0
or V (ϕ) = 0.c If the potential vanishes, the theory is characterized by a single
function α(ϕ). The expansion of this function around the asymptotic value ϕ0 can
be written in the form

α(ϕ) = α0 + β0(ϕ− ϕ0) + · · · . (10)

The choice α(ϕ) = α0 = const. (i.e. ω(φ) = const.) corresponds to Brans–Dicke
theory. A more general formulation, proposed by Damour and Esposito-Farèse, is
parametrized by α0 and β0.159,160 Another simple variant is massive Brans–Dicke
theory, in which α(ϕ) is constant, but the potential is nonvanishing and has the
form U(φ) = 1

2U
′′(φ0)(φ − φ0)2, so that the scalar field has a mass m2

s ∼ U ′′(φ0).
Since, the scalar field ϕ in the action (9) is dimensionless, the function α(ϕ) and
the constants α0, β0 are dimensionless as well.

In the Einstein-frame, the field equations are

G�
µν = 2

(
∂µϕ∂νϕ− 1

2
g�

µν∂σϕ∂
σϕ

)
− 1

2
g�

µνV (ϕ) + 8πT �
µν , (11a)

�g�ϕ = −4πα(ϕ)T � +
1
4
dV

dϕ
, (11b)

where

T � µν = − 2√−g
δSM (Ψ, A2g�

µν)
δg�

µν

(12)

is the Einstein-frame stress–energy tensor of matter fields, and T � = g� µνT �
µν is its

trace. Equation (11b) shows that α(ϕ) determines the strength of the coupling of
the scalar fields to matter.144,161

Astrophysical observations set bounds on the parameter space of scalar–tensor
theories. In the case of Brans–Dicke theory, the best observational bound (α0 <

3.5× 10−3) comes from the Cassini measurement of the Shapiro time delay.162 An
interesting feature of scalar–tensor gravity is the prediction of characteristic physical
phenomena which do not occur in GR. Even though, we know from observations
that α0 � 1 and that GR deviations are generally small, these phenomena may
lead to observable consequences. The best known example is the fact that compact
binary systems in scalar–tensor gravity emit dipolar gravitational radiation.163,164

Dipolar gravitational radiation is “pre-Newtonian”, i.e. it occurs at lower PN order
than quadrupole radiation, and it does not exist in GR. In the more general case
with β0 = 0, the phenomenon of spontaneous scalarization (described below) can
lead in principle to macroscopic modifications in the structure of NSs, significantly

cThis approximation corresponds to neglecting the cosmological term, the mass of the scalar
field and possible self-interactions. In an asymptotically flat spacetime, the scalar field tends to
a constant φ0 at spatial infinity, corresponding to a minimum of U(φ). Taylor expanding U(φ)
around φ0 yields, at the lowest orders, a cosmological constant and a mass term for the scalar
field.151,158
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affecting the amount of dipolar radiation emitted by a binary system. Therefore
the best constraints in the (α0, β0) plane come from observations of NS–NS and
NS–WD binary systems.165 Observations of compact binary systems also constrain
massive Brans–Dicke theory, leading to exclusion regions in the (α0,ms) plane.158

3.1.1. Spontaneous scalarization in compact stars

An interesting feature of scalar–tensor theories is the existence of nonperturbative
NS solutions in which the scalar field amplitude is finite even for α0 � 1: this
phenomenon, known as spontaneous scalarization,159,160 may significantly affect
the mass and radius of a NS, and therefore the orbital motion of a compact binary
system, even far from coalescence. A simple way to illustrate the principle behind
spontaneous scalarization is by taking the limit in which the scalar field ϕ is a small
perturbation around a GR solution.166 Expanding around the constant value ϕ0 to
first-order in ϕ̂ ≡ ϕ− ϕ0 � 1, the field equations in the Einstein-frame (11) read

G�
µν = 8πT �

µν , (13a)

��ϕ̂ = −4πα0T
� − 4πβ0ϕ̂T

�. (13b)

Here, we have assumed analyticity around ϕ ∼ ϕ0 and we have used Eq. (10). It
is clear from Eq. (13b) that α0 controls the effective coupling between the scalar
and matter. Various observations, such as weak-gravity constraints and tests of
violations of the strong equivalence principle, require α0 to be negligibly small when
the scalar tends to its asymptotic value.160,165,167 This implies that a configuration
in which the scalar ϕ ≈ ϕ0 and α0 ≈ 0 should be at least an approximate solution
in most viable scalar–tensor theories. With α0 = 0, any background GR solution
solves the field equations above at first-order in the scalar field. At this order, the
Klein–Gordon equation reads

[�� − µ2
s(x

ν)]ϕ̂ = 0, µ2
s(x

ν) ≡ −4πβ0T
�. (14)

Thus, the coupling of the scalar field to matter is equivalent to an effective xν -
dependent mass. Depending on the sign of β0T

�, the effective mass squared can
be negative. Because typicallyd −T � ≈ ρ� > 0 , this happens when β0 < 0. When
µ2

s < 0 in a sufficiently large region inside the NS, scalar perturbations of a GR
equilibrium solution develop a tachyonic instability associated with an exponen-
tially growing mode, which causes the growth of scalar hair in a process similar to
ferromagnetism.159,160

Spherically symmetric NSs develop spontaneous scalarization for β0 � −4.35.170

Detailed investigations of stellar structure,160,171 numerical simulations of col-
lapse172–175 and stability studies170,176 confirmed that spontaneously scalarized
configurations would indeed be the end-state of stellar collapse in these theories.

dSome nuclear equations of state (EOSs) allow for positive T � in the NS interior, with potentially
interesting phenomenological implications.168,169
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This is subject, however, to the collapse process reaching a sufficient level of com-
pactness. Recent simulations of supernova core collapse identified clear signatures
of spontaneous scalarization when the collapse ultimately formed a BH, but not in
case of neutron-star end products, as these were not compact enough. Further stud-
ies using more elaborate treatment of the microphysics and/or relaxing symmetry
assumptions are needed to determine how generic a feature this is in core collapse
scenarios. Finally, spontaneously scalarized configurations may also be the result of
semiclassical vacuum instabilities.177–180

The nonradial oscillation modes of spontaneously scalarized, nonrotating stars
were studied by various authors.181–184 The bottom line is that the oscillation
frequencies can differ significantly from their GR counterparts if spontaneous scalar-
ization modifies the equilibrium properties of the star (e.g. the mass–radius rela-
tion) by appreciable amounts. However, current binary pulsar observations yield
very tight constraints on spontaneous scalarization — implying in particular that
β � −4.5 — and the oscillation modes of scalarized stars for viable theory param-
eters are unlikely to differ from their GR counterparts by any measurable amount.
Note, however, that the binary pulsar constraints on β apply to the case of mass-
less ST theories. For massive scalars, much larger (negative) β and correspond-
ingly stronger effects on the structure and dynamics of compact objects may be
possible.185

Spinning NSs at first-order in the Hartle–Thorne slow-rotation approximation
were studied by Damour and Esposito-Farèse160 and later by Sotani.187 At first-
order in rotation, the scalar field only affects the moment of inertia, mass and radius
of the NS. Second-order calculations186 are necessary to compute corrections to the
spin-induced quadrupole moment, tidal and rotational Love numbers, as well as
higher order corrections to the NS mass and to the scalar charge. Figure 1 shows
representative examples of the properties of NSs in a scalar–tensor theory with
spontaneous scalarization at second-order in the rotation parameter.

Rapidly rotating NSs in scalar–tensor theories were recently constructed188 by
extending the RNS code.189 Scalarization effects are stronger — and deviations from
GR are larger — for rapidly spinning NSs.190,191 Therefore, despite the tight binary
pulsar bounds, it is still possible that spontaneous scalarization may occur in rapidly
rotating stars.

Old, isolated NSs, as well as the NSs whose inspiral and merger, we expect to
observe with GW detectors, are expected to be rotating well below their mass-
shedding limit. However, these considerations may not apply just before merger,
where the rotational frequencies of each NS may approach the mass-shedding limit.
In these conditions, numerical simulations have also recently revealed the possibility
of “dynamical scalarization” — a growth of the scalar field that may significantly
affect the waveform near merger, and potentially be detectable.192–196

A more exotic mechanism to amplify the effects of scalarization is anisotropy
in the matter composing the star.197 Nuclear matter may be anisotropic at very
high densities, where the nuclear interactions must be treated relativistically and
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Fig. 1. NS configurations in GR (solid lines) and in two scalar–tensor theories defined by Eq. (9)

with A(ϕ) ≡ e
1
2 β0ϕ2

and V (ϕ) ≡ 0. Dashed lines refer to β0 = −4.5, ϕ∞
0 /

√
4π = 10−3; dash-

dotted lines refer to β0 = −6, ϕ∞
0 /

√
4π = 10−3. Each panel shows results for three different EOS

models (FPS, APR and MS1). Top-left panel, left inset: relation between the nonrotating mass M
and the radius R in the Einstein-frame. Top-left panel, right inset: relative mass correction δM/M
induced by rotation at the Keplerian limit as a function of the mass M of a nonspinning star with
the same central energy density. Top-right panel, left inset: scalar charge q̃/M as a function of M .
Top-right panel, right inset: relative correction to the scalar charge δq̃/q̃ induced by rotation as a
function of M . Bottom-left panel: Jordan-frame moment of inertia Ĩ (left inset) and Jordan-frame
quadrupole moment Q̃ (right inset) as functions of M . Bottom-right panel: Jordan-frame tidal (λ̃)
and rotational (λ̃rot) Love numbers as functions of M . (From Pani and Berti.186)

phase transitions (e.g. to pion condensates or to a superfluid state) may occur.
For example, Nelmes and Piette198 recently considered NS structure within the
Skyrme model — a low energy, effective field theory for quantum chromodynamics
(QCD) — finding significant anisotropic strains for stars with mass M � 1.5M�
(see also work by Adam et al.199,200). The effect of anisotropy is shown in Fig. 2.
For illustration, in the figure we adopt a very simple model developed in the 70’s by
Bowers and Liang,201 where the degree of anisotropy is parametrized by a parame-
ter λBL. The left panel shows the critical threshold for scalarization as a function of
stellar compactness for several “ordinary” (isotropic) EOSs: the EOS has almost no
effect on the critical threshold for scalarization, which is always around β = −4.35.
The fact that scalarization is only possible when β � −4.35 was first shown by
Harada170 using catastrophe theory. In the right panel, on the other hand, we show
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Fig. 2. Effect of anisotropy on the scalarization threshold. (Adapted from Silva et al.197).

that the critical β for scalarization (and, as it turns out, also the effects of scalar-
ization on macroscopic NS properties) increases (decreases) when the tangential
pressure is bigger (smaller) than the radial pressure.

An interesting feature of the Bowers–Liang models is that it allows for stellar
configurations with compactness approaching the Schwarzschild limit r = 2M . Yagi
and Yunes used this observation to study the recently found “I-Love-Q” universal
relations — which relate bulk NS properties such as the moment of inertia, spin-
induced quadrupole moment and tidal deformability in an EOS-independent way —
as NSs approach the BH limit.202–204

3.1.2. Black hole hair?

The phenomenology of scalar–tensor theory in vacuum spacetimes, such as BH
spacetimes, is less interesting. When the matter action SM can be neglected, the
Einstein-frame formulation of the theory is equivalent to GR minimally coupled
to a scalar field. BHs in Bergmann–Wagoner theories satisfy the same no-hair
theorem as in GR, and thus the stationary BH solutions in the two theories coin-
cide.205–207 Moreover, dynamical (vacuum) BH spacetimes satisfy a similar general-
ized no-hair theorem: the dynamics of a BH binary system in Bergmann–Wagoner
theory with vanishing potential are the same as in GR,144 up to at least 2.5 PN
order for generic mass ratios208 and at any PN order in the extreme mass-ratio
limit.166

If there is more than one massive real scalar field, however, or at least one
massive complex scalar field, the situation concerning stationary BH solutions can
be very different: axisymmetric, hairy BHs do exist ,148,209,210 as will be reviewed
in Sec. 4. Tensor-multi-scalar theories have indeed received more attention in the
recent literature, as we now discuss.
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3.2. Tensor-multi-scalar theories

A natural generalization of the Bergmann–Wagoner formulation (8) consists in
including more than one scalar field coupled with gravity. The action of tensor-
multi-scalar (TMS) gravity144,211 is:

S =
1

16π

∫
d4x

√−g(F (φ)R − γab(φ)gµν∂µφ
a∂νφ

b − V (φ)) + SM [Ψ, gµν ], (15)

where F and V are functions of the N scalar fields φa (a = 1 . . .N). The presence of
multiple fields allows for a wider range of kinetic terms, i.e. terms quadratic in the
fields’ first derivatives. These are conveniently formulated in terms of a manifold
(separate from the spacetime manifold) spanned by the scalar fields themselves.
The scalar fields live on this manifold (the target space) with metric γab(φ). The
action (15) is invariant not only under spacetime diffeomorphisms, but also under
target-space diffeomorphisms, i.e. scalar field redefinitions. TMS theories are more
complex than theories with a single scalar field, since the geometry of the target
space can affect the dynamics.

The simplest extension of a ST theory with a single real scalar field is a theory
with two real scalar fields. If we work, equivalently, with a single complex scalar ϕ
instead, the action reduces to

S =
1

4πG�

∫
d4x

√−g
[
R

4
− gµνγ(ϕ, ϕ̄)∇µϕ̄∇νϕ− V (ϕ, ϕ̄)

]

+Sm[A2(ϕ, ϕ̄)gµν ; Ψ]. (16)

Hereafter, we assume that the potential vanishes, i.e. V (ϕ, ϕ̄) = 0, and that the
target space is maximally symmetric. Upon stereographic projection and field redef-
inition211 the target-space metric can be written as

γ(ϕ, ϕ̄) =
1
2

(
1 +

ϕ̄ϕ

4�2
)−2

, (17)

where � is the radius of curvature of the target-space geometry. For a spherical
geometry we have �

2 > 0, for a hyperbolic geometry �
2 < 0, and in the limit � → ∞

the geometry is flat.
The function A(ϕ, ϕ̄) determines the scalar-matter coupling. What enters the

field equations is actually the function κ, defined as

κ(ϕ, ϕ̄) ≡ 2
(
1 +

ϕ̄ϕ

4r2

) ∂ logA(ϕ, ϕ̄)
∂ϕ

. (18)

Without loss of generality, we assume that far away from the source the field van-
ishes: ϕ∞ = 0. We then expand the function logA in a series about ϕ = 0:

logA(ϕ, ϕ̄) = α∗ϕ+ ᾱ∗ϕ̄+
1
2
β0ϕϕ̄+

1
4
β∗

1ϕ
2 +

1
4
β̄∗

1 ϕ̄
2 + · · · , (19)

where β0 is real, while α∗ and β∗
1 are in general complex numbers. Redefine β∗

1 ≡
β1e

iθ, where θ is chosen such that β1 is real. Then, after defining α∗ ≡ αeiθ/2 and
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a new field ψ ≡ ϕeiθ/2, the field equations become

Rµν = 2
(

1 +
ψ̄ψ

4�2

)−2

∂(µψ̄∂ν)ψ + 8πG�

(
Tµν − 1

2
Tgµν

)
, (20)

�ψ =
(

2ψ̄
ψ̄ψ + 4�2

)
gµν∂µψ∂νψ − 4πG�

(
1 +

ψ̄ψ

4�2

)
κ̄(ψ, ψ̄)T, (21)

where

logA(ψ, ψ̄) = αψ + ᾱψ̄ +
1
2
β0ψψ̄ +

1
4
β1ψ

2 +
1
4
β1ψ̄

2 + · · ·

= αψ + ᾱψ̄ +
1
2
[(β0 + β1)Re[ψ]2 + (β0 − β1)Im[ψ]2] (22)

and in the second line, we have split the field ψ into real and imaginary parts:
ψ ≡ Re[ψ] + i Im[ψ]. The structure of this theory when α = 0 is determined by
three real parameters: β0 + β1, β0 − β1 and the target-space curvature �

2. When
α = 0, two further parameters (|α| and argα) are necessary to define the theory.

This two-scalar model is the simplest generalization of the spontaneous scalar-
ization model by Damour and Esposito-Farèse.159 Note that the quantity |α|2 ≡
αᾱ ≡ Re[α]2 + Im[α]2 is strongly constrained by observations, similarly to the
single-scalar case. However, in TMS theories α is a complex quantity and its argu-
ment, argα, is unconstrained in the weak-field regime. When α = 0, the conformal
coupling at second-order in ψ reduces to

logA(ψ, ψ̄) =
1
2
β0ψψ̄ +

1
4
β1ψ

2 +
1
4
β1ψ̄

2. (23)

Compact stars in theories with α = 0 and α = 0 are rather different. When α = 0
and β1 = 0, the theory is invariant under the symmetries ψ → ψ̄ and ψ → −ψ. In
this case, we only found solutions where either the real or the imaginary part of
the scalar field has a nontrivial profile; these theories are effectively equivalent to
single-scalar theories.

When α = 0 the situation is more interesting, as shown in Fig. 3. Introduc-
tion of α ∈ R partially breaks this symmetry down to conjugation only, whereas
introduction of α ∈ C fully breaks the symmetry. Now GR configurations are not
solutions of the field equations. In particular, a constant (or zero) scalar field does
not satisfy Eq. (21) when T = 0. Therefore, it is not surprising that when α = 0
we can find solutions with two nontrivial scalar profiles even when β0 = β1 = 0. A
more interesting question is whether there are stellar configurations in which both
scalar fields have a large amplitude. These “biscalarized” solutions are absent in
the α = 0 case, but as it turns out they exist when α = 0. For concreteness, in
the figure we set |α| = 10−3, so that the theory is compatible with experimental
bounds from binary pulsar observations. We set 1/� = 0 (i.e. for simplicity we con-
sider a flat target space), we fix β0 = −5, and we vary argα in the range [0, 2π]
in steps of π/6. As shown in Fig. 3 — where dots denote the real and imaginary
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-0.2

0

0.2

Im[ψ0 ]

-0.2

0

0.2

-0.2 0 0.2

-0.2

0

0.2

-0.2 0 0.2

Re[ψ0 ]
-0.2 0 0.2 -0.2 0 0.2

β1=0.01 β1=0.09 β1=0.16 β1=0.24

β1=0.54β1=0.46β1=0.39β1=0.31

β1=0.61 β1=0.69 β1=0.76 β1=0.99

|α| = 0.001,    1 / r = 0

Fig. 3. Scalar field amplitudes in the full TMS theory. Real and imaginary part of the scalar
field amplitude at the stellar center ψ0 for stellar models with β0 = −5, |α| = 0.001 and fixed
baryon mass MB = 1.8 M�. The different panels show the solutions found for different values of
β1, as indicated in each panel. In each case, we vary the phase of α from 0 to 2π in steps of π/6.
(From Horbatsch et al.211)

parts of the central value of the scalar field ψ0 for which solutions were found —
there are several solutions where both the real and imaginary part of the scalar
field are nonzero. The solutions are at least approximately O(2) symmetric when
β1 ∼ |α|. The symmetry is broken (the solution “circles” turn into “crosses”) when
β1 � |α|, and the crosslike shape of the scalarized solutions in the (Re[ψ0], Im[ψ0])
plane collapses towards a set of solutions on the vertical line Re[ψ0] = 0 for the
larger values of β1 (bottom panels in Fig. 3). For the case α = 0, it is easy to
see from Eq. (22) that spontaneous scalarization of Re[ψ] occurs (in analogy with
the single-field case), if β0 + β1 � −4.35, and that scalarized models with a large
imaginary part Im[ψ] exist if β0 − β1 � −4.35. Our biscalarized models have been
calculated for fixed β0 = −5. For β1 � 0.65 we therefore enter the regime where
β0 + β1 � −4.35, and we no longer expect to find models with strongly scalarized
Re[ψ]. The condition β0 − β1 � −4.35 for scalarization of Im[ψ], however, remains
satisfied, so that scalarized models should cluster close to the Re[ψ0]-axis. This is
indeed observed in the bottom panels of Fig. 3. A more detailed investigation of
the phenomenology of these models is underway.

1641022-19

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

01
6.

25
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

A
M

B
R

ID
G

E
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

July 13, 2016 16:59 WSPC/S0218-2718 142-IJMPD 1641022

E. Berti et al.

3.3. Horndeski theories

Besides the obvious addition of one or more scalar field(s), a second possibility
to generalize scalar–tensor theories of the Bergmann–Wagoner type has recently
attracted a great deal of attention. The theory in question was first formulated by
Horndeski,212 and it is the most general single-scalar theory with second-order field
equations. In “modern” notation, the action of Horndeski gravity can be written in
terms of Galileon interactions213 as

S =
1
8π

5∑
i=2

∫
d4x

√−gLi, (24)

where

L2 = G2, (25a)

L3 = −G3�φ, (25b)

L4 = G4R+G4X[(�φ)2 − φ2
µν ], (25c)

L5 = G5Gµνφ
µν − G5X

6
[(�φ)3 + 2φ3

µν − 3φ2
µν�φ]. (25d)

The functions Gi = Gi(φ,X) depend only on the scalar field φ and its kinetic
energy, X = −∂µφ∂

µφ/2. For brevity, we have also defined the shorthand notation
φµ...ν ≡ ∇µ . . .∇νφ, φ2

µν ≡ φµνφ
µν , φ3

µν ≡ φµνφ
ναφµ

α and �φ ≡ gµνφµν .
An attractive feature of Horndeski gravity is its generality. The theory includes

a broad spectrum of phenomenological dark energy models, as well as modified
gravity theories with a single scalar degree of freedom. Some important special
limits of the theory are listed below:

(1) GR corresponds to choosing G4 = 1/2 and G2 = G3 = G5 = 0.
(2) When G4 = F (φ) and all other Gi’s are zero, we recover a scalar–tensor theory

with nonminimal coupling of the form F (φ)R. Therefore Brans–Dicke theory
and f(R) gravity are special cases of Horndeski gravity.

(3) A theory that we will consider in some detail below, namely Einstein-dilaton-
Gauss–Bonnet (EdGB) gravity, has the action

S =
1

16π

∫
d4x

√−g(R +X − V (φ) + ξ(φ)R2
GB), (26)

where V (φ) is the scalar potential, ξ(φ) is a coupling function and

R2
GB = R2 − 4RµνR

µν +RαβγδR
αβγδ (27)

is the Gauss–Bonnet invariant. This theory can be recovered with the
choices214,215

G2 =
X

2
− V

2
+ 4ξ(4)X2(3 − lnX),

G3 = 2ξ(3)X(7 − 3 lnX),
(28a)
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G4 =
1
2

+ 2ξ(2)X(2 − lnX),

G5 = −2ξ(1) lnX,
(28b)

where we have defined ξ(n) ≡ ∂nξ/∂φn.214

(4) A theory with nonminimal derivative coupling between the scalar field φ and
the Einstein tensor Gµν (the “John” Lagrangian in the language of the so-called
“Fab Four” model216,217), with action

S =
∫
d4x

√−g[ζR + 2βX + ηGµνφµφν − 2Λ0], (29)

can be constructed by setting

G2 = −2Λ0 + 2βX, G4 = ζ + ηX, G3 = G5 = 0, (30)

where Λ0, η, ζ and β are constants. Incidentally, a coupling of the formGµνφµφν

can also be obtained by setting G5 = −φ and integrating by parts.218

(5) The Lagrangian L2 corresponds to the k-essence field.219–221 For this reason,
some of the literature denotes the function G2 by the letter K.

(6) The covariant Galileon model222 corresponds to setting G2 = −c2X , G3 =
−c3X/M3, G4 = M2

Pl/2 − c4X
2/M6 and G5 = 3c5X2/M9, where the ci (i =

2, . . . , 5) are constants and M is a constant with dimensions of mass.

Because of the generality of Horndeski gravity, a comprehensive review of com-
pact objects would inevitably have to discuss important subclasses that have been
studied for a long time.5 A more specific review of compact objects in the subclasses
(4)–(6) can be found in this same volume,223 and some examples are also discussed
in another review.148 In the next section, we complement these reviews focusing on
recent work in EdGB gravity.

3.4. Einstein-dilaton-Gauss–Bonnet gravity

In EdGB gravity224 (see Sec. 3.3), the Gauss–Bonnet invariant (27) is coupled with
a scalar field.e The resulting action of EdGB gravity, Eq. (26), is a special case of
Horndeski gravity, as discussed in Sec. 3.3. With the choice ξ(φ) = αφ this theory
is shift-symmetric, and it has been shown225 that it is the only shift-symmetric
Horndeski gravity theory in which the no-hair theorems do not hold.

EdGB gravity can also be seen as belonging to a different class of modified grav-
ity: that of quadratic gravity theories,226,227 in which quadratic curvature terms are
included in the action. EdGB gravity holds a special place as the only quadratic
gravity theory with equations of motion of second differential order. Other theories
of quadratic curvature gravity (e.g. dynamical Chern–Simons gravity228,229) have
equations of motion of higher differential order, and are then subject to Ostrograd-
ski’s instability.230 In order to avoid this instability, they should be considered as

eThe normalization of the scalar is different from those in Secs. 3.1 and 3.2, by a factor 2.
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effective theories, obtained as truncations of more general theories. In other words,
EdGB gravity is consistent for any value of the coupling constant, while other
quadratic gravity theories should only be considered in the weak-coupling limit.
Note also that the EdGB term without the coupling to a scalar field would be
trivial, since R2

GB is a total derivative.
Including a quadratic curvature term in the action is an interesting modifica-

tion of GR, for a variety of reasons. First of all, this is the simplest way to modify
the strong-curvature regime of gravity, and, second, it is also a way to circumvent
no-hair theorems (see the discussion in Secs. 3.1 and 4 for different ways to grow
BH hair). Moreover, quadratic curvature terms can make the theory renormaliz-
able.231 In particular, the EdGB term naturally arises in low-energy effective string
theories232,233 when ξ(φ) = αeφ/4.

Hereafter, we consider EdGB gravity with ξ(φ) = αeφ/4. The first BH solution
of this theory, derived about 20 years ago by Kanti et al.,224 is a numerical solution
describing a spherically symmetric BH. The solution has scalar hair, i.e. a non-
trivial configuration of the scalar field, but only secondary hair (the scalar charge
D is determined by the mass M , and hence is not a free parameter. It can be shown
that Kanti’s solution only exists for224,234

0 < α/M2 � 0.691, (31)

where M is the BH mass. The best observational bound on the coupling parameter
is α � 47M2�.235 This bound is weaker than the theoretical bound (31) for BHs
with M � 8.2M�.236

In recent years, numerical solutions describing slowly rotating234 and rapidly
rotating237 BHs have been derived. These solutions describe stationary BHs for all
values of the mass and the spin, and for all values of the coupling parameter in
the allowed range (31). However, these solutions require a numerical integration for
each set of parameters. In order to devise and implement observational tests based
on astrophysical or GW observations (for instance, for Monte Carlo data analysis),
an approximate, analytical solution can be more useful than numerical solutions.

Analytical BH solutions in EdGB theory have been determined as perturbative
expansions in the dimensionless coupling parameter ζ = α/M2 and the dimen-
sionless spin ā = J/M2, at order O(ζ2, ā0),226,238 O(ζ2, ā1),227 O(ζ2, ā2),239 and
finally at order O(ζ7, ā5).240 For a slowly rotating BH, the solution derived in
Ref. 240 reproduces the most relevant geodesic quantities (the ISCO location and
the epicyclic frequencies) within 1%, for the entire allowed range (31) of the coupling
parameter.

Astrophysical observations from the near-horizon region of BHs can allow tests
of GR against modified theories (such as EdGB gravity) which predict deviations
in the strong-field, high-curvature regime. Indeed, near the horizon of stellar-mass
BHs the spacetime curvature is very large, and (for sufficiently large values of α)
BH solutions in EdGB theory may be significantly different from the Kerr solu-
tion. These deviations can affect observable quantities, such as the quasi-periodic
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oscillations (QPOs) observed in the X-ray flux of accreting BHs.236 Indeed, in many
astrophysical models the frequencies of these QPOs are appropriate combinations
of the epicyclic frequencies of the (near-horizon) BH geodesics, in which the strong-
field regime of gravity is manifest. Therefore, future large-area X-ray telescopes
such as LOFT241 could set constraints on the coupling parameter α. For instance,
the detection of two QPO triplets from a BH with M = 5.3M� and ā = 0.2 by a
detector having the LOFT design sensitivity could exclude the range ζ � 0.4 with
3σ confidence.236

4. Implications of Superradiant Instabilities for Fundamental
Physics and Astrophysics

In the previous section, we focused on specific modifications of Einstein’s gravity
and on the different physical consequences, as well as compact object solutions, that
arise in these models. Perhaps somewhat more surprisingly, even within Einstein’s
gravity, considering simple fundamental fields that satisfy the energy conditions can
also lead to new types of compact objects, with interesting physical consequences.
In this section, we will review these recent developments, that are related to the
complex phenomenon known as superradiance.242 Other relevant recent develop-
ments related to superradiance, in different physical and mathematical directions
to the ones reviewed here, can be found, for instance, in Refs. 243–248.

4.1. Setup

Einstein’s GR minimally coupled to fundamental fields, such as massive scalars or
vectors, is described by the Lagrangian

L =
R

κ
− F ∗

µνF
µν

4
− µ2

V

2
A∗

νA
ν − gµν

2
φ∗,µφ,ν − µ2

S

2
φ∗φ. (32)

We have defined κ = 16π and Fµν ≡ ∇µAν −∇νAµ is the Maxwell tensor. Both the
scalar and vector fields are assumed to be complex, for reasons that will become
clear soon. The mass mB of the bosons under consideration is related to the mass
parameters above through µS,V = mB/�. By “fundamental” we mean fields which
are not effective descriptions of other microscopic degrees of freedom. For most of
the analysis below, however, the true nature of these fields (i.e. whether they are
truly fundamental or rather a coarse-grained representation of more fundamental
degrees of freedom), is not relevant. Each of them is completely equivalent to two
real scalar or vector fields, but some of our considerations below apply equally well
to one or many real scalar and vector fields.

The theories represented by this action are relevant for several reasons. Because
they are simple, they can be thought of as proxies for more complex interactions,
of which they would be faithful models in certain regimes (presumably when higher
order interactions are negligible). Fundamental bosons also play a key role in particle
physics. For instance they could describe the axion or axionlike particles, originally
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intended to solve the strong-CP problem in QCD, which recently gained promi-
nence as dark-matter candidates.249–251 In this context, self-gravitating solutions
of fundamental fields allow us to understand and study quantitatively the growth
of dark matter structures and their clustering inside compact stars.252,253

Whether or not they form a significant component of dark matter, minimally
coupled fundamental fields should obey the equivalence principle and freely fall in
the same way as standard model fields. Thus, the most promising channel to look
for their imprints consists of gravitational interactions.

4.2. Superradiance and superradiant instabilities

Fundamental fields in the presence of gravity display of course a panoply of interest-
ing effects, such as the critical phenomena identified in Choptuik’s seminal study.254

In strong gravitational fields, one of the most peculiar is superradiance, i.e. the
amplification of low-frequency waves scattering off rotating BHs.242,255,256 Super-
radiance is required by the second law of thermodynamics, and is akin to tidal
acceleration in planetary dynamics.257 Superradiance is active for low-frequency,
bosonic fields satisfying the superradiance condition

ω < mΩ (33)

with m an integer azimuthal number and Ω the angular frequency of the BH. The
amplitude of the superradiant amplification of any incident wave depends on the
rotation Ω, on the wave frequency ω and on the field being scattered.242,258

Superradiant mechanisms can trigger instabilities in spacetimes that are able to
confine the fluctuations. In such cases, the wave is forced to bounce back and forth,
being repeatedly amplified upon interaction with the BH, and leading to exponential
growth of linearized fluctuations. This mechanism is called a black hole bomb,259–262

and leads to instabilities in truly confined spacetimes like anti-de Sitter.263–267

It is interesting that the same mechanism also makes Kerr BHs unstable
under massive, scalar-field fluctuations,268–271 vector-field fluctuations272–274 or
even tensor-field perturbations.275 Physically, massive states prevent full leakage
to infinity and act as an effective barrier for low-frequency waves.

4.3. Hairy black holes bifurcating from the Kerr solution

Since Kerr BHs are unstable against sufficiently low frequency modes of a massive
bosonic field, a relevant question is: what is the endpoint of the instability? While
this is still an open question (but see Sec. 4.3.4), a relevant observation is the exis-
tence of stationary, asymptotically flat BH solutions of the model (32), which are
regular on and outside the event horizon and for which the horizon is in equilibrium
with a nontrivial scalar or vector field condensate. Moreover these BHs are contin-
uously connected with the Kerr solution, and as such they have been dubbed Kerr
BHs with scalar209,210,276 or Proca hair.277 They are manifestly related to the phe-
nomenon of superradiance, as they exist at the threshold of the inequality (33), and
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they are likely to play a role either as endpoints or as long-lived intermediate states
in the development of the superradiant instability of Kerr BHs in the presence of
massive scalar or vector fields.

The existence of these hairy BH solutions raises three immediate questions:

(1) “How is it possible that stationary, asymptotically flat BH solutions different
from Kerr exist in the very simple model (32), in view of the well-known no-hair
theorems that apply to this model (in particular the pioneering theorems due
to Bekenstein for the scalar278 and Proca279,280 cases)?” (see also Ref. 148 for
a review of no-hair theorems applying to the scalar case).

(2) “If these hairy BH solutions are continuously connected to the Kerr solution,
then there must be an imprint of their existence when we consider the corre-
sponding matter fields on the Kerr background as test fields. Is it so?”

(3) “Do these BHs trivialize in the limit of vanishing horizon or is there some
residual gravitating configuration in this limit?”

We shall tackle each of these questions in the following three subsections.

4.3.1. Circumventing no-hair theorems

The answer to (1) is simple and enlightening: theorems have assumptions and
assumptions can be dropped. In the present case, an assumption in many of the
no-hair theorems, including those of Bekenstein, is that the metric and the mat-
ter field share the same symmetries. This is not necessary: the spacetime and the
energy–momentum tensor should share the same symmetries, but not the matter
field itself. This apparently innocuous observation allows us to circumvent the sim-
plest Bekenstein-type no-hair theorems, but observe that it is a necessary but not
sufficient ingredient. The reason will become clear in the following.

The metric ansatz that has been successfully used for finding (nonextremal)
Kerr BHs with scalar209 and Proca277 hair reads:

ds2 = −e2F0(r,θ)N(r)dt2 + e2F1(r,θ)

[
dr2

N(r)
+ r2dθ2

]

+ r2 sin2 θe2F2(r,θ)[dϕ−W (r, θ)dt]2, (34)

where N(r) ≡ 1− rH/r and rH is a constant. The metric is completely determined
by four functions of the spheroidal coordinates (r, θ). These coordinates reduce to
prolate spheroidal coordinates (rather than the more familiar oblate spheroidal ones,
obtained in the flat-spacetime limit of the Boyer–Lindquist form of the Kerr metric)
in an appropriate Minkowski limit.277 A simple analysis shows that rH = const.
surfaces are null (assuming they are regular). On these surfaces, null orbits with
θ = const. have an angular velocity, as measured by the observer at infinity, ΩH ≡
W (rH , θ). From the numerical solutions, it turns out that ΩH is θ-independent and
r = rH is a Killing horizon of the Killing vector field ξ = ∂t + ΩH∂ϕ. Thus, r = rH
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is the event horizon. Observe that the line element (34) admits two independent
Killing vector fields: k ≡ ∂t and m = ∂ϕ.

On the other hand, the “matter” ansatz that has been used to find the hairy
BHs is

Ψ(t, r, θ, ϕ) = e−iωt+imϕφ(r, θ) (35)

for the scalar case,209 and

A(t, r, θ, ϕ) = e−iωt+imϕ{i[V (r, θ)dt+H3(r, θ) sin θdϕ]

+H1(r, θ)dr +H2(r, θ)dθ}, (36)

for the Proca case.277 The two constant parameters ω,m are the frequency and
azimuthal quantum number, with ω ∈ R+, m ∈ Z/{0}. An immediate observation
is that the matter fields are not invariant under the two aforementioned Killing
vector fields:

LkAµ = 0, LmAµ = 0, LkΨ = 0, LmΨ = 0, (37)

but the corresponding energy–momentum-tensors are

LkT
(Ψ)
αβ = 0, LkT

(A)
αβ = 0, LmT

(Ψ)
αβ = 0, LmT

(A)
αβ = 0. (38)

Thus Bekenstein-type theorems are inapplicable and the absence of hair is no longer
guaranteed, but the left- and right-hand sides of the Einstein equations still have
the same symmetries.

The ansatz (34), in combination with (35) or (36), yields axially symmetric solu-
tions. One may wonder whether BH solutions could also exist in the much simpler
spherically symmetric case, obtained by taking W = 0 and F1 = F2 in (34) and
m = 0 and φ = φ(r) in (35); H2 = H3 = 0 and V = V (r), H1 = H1(r) in (36),
respectively. In that case, however, it was shown for both the scalar case281 and
the Proca case277 that no BH solutions exist. Thus, as mentioned above, symmetry
(of the metric) noninheritance by the matter fields is a necessary but not suffi-
cient ingredient. A further ingredient is necessary; this can be seen by answering
question (2) above.

4.3.2. Stationary clouds and the threshold of superradiance

The answer to question (2) above is “yes”. A test field analysis shows the exis-
tence of stationary, everywhere regular (on and outside the horizon) solutions of
the scalar209,282–284 or Proca field277 on the Kerr BH spacetime: stationary scalar
or Proca clouds around Kerr BHs. The existence of these stationary clouds is inti-
mately related to superradiance, as we now illustrate for the scalar case.

The Klein–Gordon equation for a massive scalar field on the Kerr background,
�KerrΨ = µ2Ψ, using Boyer–Lindquist coordinates (t, r, θ, ϕ) and an ansatz Ψ =
e−iωt+imϕS(θ)R(r), allows separation of variables and hence yields two ODEs:

1
sin θ

d

dθ

(
sin θ

dS(θ)
dθ

)
+

[
a2 cos2 θ(ω2 − µ2) − m2

sin2 θ
+ Λ

]
S(θ) = 0, (39)
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d

dr

(
∆
dR(r)
dr

)

+
[
ω2(r2 + a2)2 + a2m2 − 4Mramω

∆
− ω2a2 − µ2r2 − Λ

]
R(r) = 0. (40)

Here, M and a are the ADM mass and ADM angular momentum per unit mass
of the Kerr solution, and ∆ ≡ r2 − 2Mr + a2. Λ is the separation constant, that
reduces to the familiar �(�+ 1) in the Schwarzschild limit.

The angular equation defines the spheroidal harmonics. To tackle the radial wave
equation, looking for bound state solutions, one requires exponentially decaying
solutions towards spatial infinity and a purely ingoing boundary condition on the
horizon (in a frame co-rotating with the horizon). Then, one finds in general that the
frequency ω is complex: ω = R(ω) + iI(ω). For R(ω) = mΩH , however, I(ω) = 0
and thus one finds truly stationary states with a real frequency. This condition
is interpreted as a zero mode of the superradiant instability, which sets in for
R(ω) < mΩH yielding I(ω) > 0.

This bound state problem becomes particularly simple and elegant for extremal
Kerr BHs.282 In this case the radial equation above, generically of confluent Heun
type, reduces to the confluent hypergeometric type, precisely the same equation one
finds for the Hydrogen atom (without spin). In this problem, the quantization con-
dition can be interpreted as a condition on the background parameters. Thus, the
corresponding stationary clouds — labelled by three quantum numbers (n, �,m),
where the first is the number of nodes of the radial function and the last two are the
spheroidal harmonic indices — can only exist in a subspace of Kerr solutions, actu-
ally an one-dimensional existence line, for fixed quantum numbers. This conclusion
changes, however, when the test scalar field is allowed to have self-interactions.285

The Proca case is similar in spirit, but more involved technically, since the Proca
potentials do not decouple and no separation of variables has been observed.272,273

To summarize: the answer to question (1) showed that there is a breach in the
wall; the answer to (2) shows that there is indeed something beyond the wall.

4.3.3. Solitonic limits and phenomenology

The construction of Kerr BHs with scalar and Proca hair adapted the technology
already in use for (rotating) boson stars .286,287 Scalar boson stars can be constructed
with the ansatz (34)–(35) taking rH = 0, and thus will be a limiting case of the
corresponding Kerr BHs with scalar hair.f The Einstein–Klein–Gordon system of
equations yields five coupled nonlinear PDEs for the five unknown functions plus
two “constraint” equations (which are differentially related to the remaining ones).

fTo construct the scalar boson and Proca stars, it is useful to rescale the function W as W/r
in (34) and the function H1 as H1/r in (36).
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These equations can be solved by a Newton–Raphson relaxation method.210 Like-
wise, the Einstein–Proca system, taking the ansatz (34)–(36), yields eight coupled
nonlinear PDEs for the eight unknown functions plus two “constraint” equations.
Solutions regular on and outside r = rH can be found, and they correspond to Kerr
BHs with Proca hair.277 The rH = 0 limit yields rotating Proca stars ,288 spin-1
cousins of the aformentioned (scalar) boson stars. These observations answer ques-
tion (3) above.

The exploration of the physical and phenomenological properties of these new
families of hairy BHs connected to the Kerr solutions is ongoing research. For the
scalar case, it has been noted that the hairy BHs can have quadrupoles and orbital
frequency at the ISCO quite distinct from the Kerr case.209,210 Particularly striking
are the BH shadows that have been obtained for some examples of Kerr BHs with
scalar hair, with remarkably different shapes and sizes from the Kerr case.289 These
shadows can be partly understood regarding the hairy BHs as composites of a boson
star with a horizon, a perspective that can also explain, for instance, the ergoregion
structure of these spacetimes.290 Generalizations of the hairy BHs to include self-
interactions of the matter field have been considered.291,292 It is likely that similar
generalizations are possible in the Proca case.

Finally, let us remark that Myers–Perry BHs with scalar hair have been found
in D = 5. These are also anchored to a similar condition between the frequency
of the scalar field and the angular velocity of the horizon.293,294 In D = 5 asymp-
totically flat spacetimes, vacuum Myers–Perry BHs are not, however, afflicted by
superradiant instabilities of massive scalar fields. As such, when the scalar field is
set equal to zero, the hairy solutions do not reduce to vacuum Myers–Perry solu-
tions: even though the local geometry can become arbitrarily close to that of the
vacuum solutions, there is always a mass gap. A generalization of these solutions
including higher curvature terms has also been constructed.295

4.3.4. Can hairy BHs form?

The existence of Kerr BHs with scalar and Proca hair is theoretically interesting,
and it presents us with a rich landscape of previously unknown BH solutions in GR.
These solutions require complex bosonic fields, but extremely long-lived solutions
exist even for real fields. These solutions describe BHs surrounded by a “cloud” of
massive bosons.296 Are these solutions relevant for astrophysics? The answer to this
question depends on two main issues: (A) the existence of massive (and very light)
bosonic fields in Nature, and (B) the formation mechanism of these solutions and
their stability properties.

Question (A) is an open issue. Question (B) has been studied in a specific sce-
nario. The development of the superradiant instability of massive scalars and vectors
has recently been addressed taking into account gravitational radiation, superra-
diant growth and the effects of a putative accretion disk around the BH,297 but
in an adiabatic approximation (rather than a fully nonlinear numerical evolution).
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Assuming that the bosonic cloud is formed through the development of the super-
radiant instability, it was shown that, within the previous approximations, (i) the
observation of supermassive BHs would show gaps in the Reggae-plane, correspond-
ing to BHs which quickly become unstable due to superradiant effects; (ii) the
bosonic cloud never backreacts significantly on the geometry; and even though
a hairy BH can effectively form, it does not depart significantly from the Kerr
geometry.297

Progress on question (B) has also been achieved using a different toy model: a
Reissner–Nordström BH enclosed in a cavity. This system is afflicted by the super-
radiant instability of bosonic fields (not necessarily massive, since the trapping
mechanism is now provided by the cavity) and it was observed that superradiant
instabilities in this system — at the test-field level — grow much faster than for Kerr
BHs, occurring even for spherically symmetric modes.262,298–300 These two features
make the system tractable with current numerical relativity technology, allowing us
to perform fully nonlinear evolutions of the superradiant instability.301 The simu-
lations showed that the final states of these unstable BHs are indeed hairy BHs at
the threshold of superradiance, which can be regarded as the charged counterparts
(in this context) of Kerr BHs with scalar hair.302 Similar results have also been
obtained for superradiantly unstable charged BHs in anti-de-Sitter spacetime.267

Finally, an orthogonal process for the formation of these hairy BHs could be
starting from the solitonic limit, rather than the BH limit. It would be nonhairy
and very interesting to understand if unstable rotating scalar boson (or Proca) stars
could develop into hairy BHs, and how hairy these BHs would be. This is an open
issue.

5. Analog Gravity

Analog models of gravity are a useful tool to investigate kinematical aspects of
curved spacetimes in condensed matter systems.303,304 Analogues have been pre-
sented in many contexts, like Bose–Einstein condensates, optical media, and flu-
ids.305–307 Here, we will give emphasis to the progress made in the latter context.
Indeed, many interesting physical properties of sonic analogues of BHs have been
recently studied, like, for instance, absorption and scattering phenomena,308–313 as
well as quasi-normal modes (QNMs).314–317

5.1. Acoustic analogues

Propagation of sound waves in an ideal fluid, under certain considerations, may
be described using the Klein–Gordon equation for a massless scalar field Φ in an
effective curved spacetime, namely

�Φ =
1√|g|∂µ(

√
|g|gµν∂νΦ) = 0, (41)

where gµν are the covariant components of the effective metric (gµν being its con-
travariant components), with determinant g. We should emphasize that gµν is a
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function of the local properties of the fluid and, in general, it is not a solution of
Einstein’s equations.

5.1.1. Canonical acoustic hole

The simplest acoustic analogue to a BH is the so-called “canonical acoustic hole”.
It consists of a spherically symmetric steady flow of an irrotational barotropic fluid
(considered also as incompressible and inviscid), presenting a sink at the origin. It
may be described by the following line element:

ds2cah = −f(r)c2sdt
2 + [f(r)]−1dr2 + r2(dθ2 + sin2 θdφ2). (42)

Here

f(r) ≡ 1 − r4H
r4
, (43)

where rH is the radius of the sonic event horizon, inside which the radial velocity
exceeds the speed of sound cs in the fluid. The canonical acoustic hole is an analogue
of the Schwarzschild BH.

5.1.2. Draining bathtub

An acoustic analogue of a rotating BH is the so-called “draining bathtub”, whose
line element may be written as

ds2dbt = −h(r)c2sdt
2 + [h(r)]−1dr2 +

(
rdφ − Cdt

r

)2

. (44)

Here

h(r) ≡ 1 − D2

c2sr
2

(45)

and the constants C and D > 0 stand for the circulation and the draining, respec-
tively. This effective geometry corresponds to the one experienced by sound waves
propagating in a fluid with flow velocity

v = −D
r
r̂ +

C

r
φ̂. (46)

The draining bathtub has an ergoregion (defined by the supersonic flow condition
|v| ≥ cs) within the radius rdbt

e =
√
C2 +D2/cs, and a sonic horizon (defined by

v · r̂ = cs) at radius rdbt
H = D/cs.310

5.1.3. Hydrodynamic vortex

By setting D = 0 in Eq. (46), we are left with a purely circulating flow, which, in
a (3+1)-dimensional setup, may be associated to the following line element

ds2hv = −
(

1 − C2

c2sr
2

)
c2sdt

2 + dr2 − 2Cdtdφ+ r2dφ2 + dz2, (47)
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where rhv
e ≡ |C|/cs is the outer boundary of the ergoregion. This effective spacetime

is the so-called “hydrodynamic vortex”.
In the remainder of this section, we will set cs ≡ 1.

5.2. Ergoregion instabilities in acoustic systems

Ergoregion instabilities318 in acoustic systems have been recently studied for the
hydrodynamic vortex, both for incompressible319 and for compressible fluids.320

Here, we will review the investigation of instabilities of the hydrodynamic vortex
composed by an incompressible fluid.319 (The numerical results exhibited here are
obtained for higher values of the azimuthal number m, complementing the ones
exhibited in Ref. 319).

Using the line element (47) in the Klein–Gordon equation (41), and assuming a
decomposition of the field Φ as

Φ(t, r, φ, z) =
1√
r

∞∑
m=−∞

uωm(r) exp[i(mφ− ωt)], (48)

we find the ordinary differential equation[
d2

dr2
+

(
ω − Cm

r2

)2

− V hv
m (r)

]
uωm(r) = 0, (49)

where the effective potential V hv
m (r) is given by

V hv
m (r) =

m2 − 1
4

r2
, (50)

where m is an integer number related with the angular momentum, and ω is the
frequency of the perturbation.

Solutions describing QNMs can be obtained from Eq. (49), considering the
asymptotic behavior at large radial distances

uωm(r → ∞) ∼ exp(iωr) (51)

and a boundary condition of Neumann type at r = rmin (close to the center of the
vortex): [

d

dr

(
uωm(r)√

r

)]
r=rmin

= 0. (52)

This condition is related to a cutoff on the radial velocity increment, i.e. [∂Φ
∂r ]r=rmin

= 0 [cf. Eq. (48)].319

Ergoregion instabilities are present in acoustic systems possessing an ergoregion
but not an event horizon. These instabilities are developed inside the ergoregion, i.e.
for r < |C|.319 In order to obtain the QNM frequencies of the hydrodynamic vortex,
we can use different numerical techniques to integrate Eq. (49) in the frequency
domain. Some results for QNM frequencies are exhibited in Table 1, for different
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Table 1. QNM frequencies ω for different values of the azimuthal number m and circulation

C = 0.5, obtained numerically from estimates via the DI and CF methods. We impose the
asymptotic behavior given by Eq. (51) and a boundary condition of Neumann type, represented
by Eq. (52), at rmin = 0.51 (outside the ergoregion) and rmin = 0.25 (inside the ergoregion).

rmin = 0.51 rmin = 0.25

m Method Re(ω) Im(ω) Re(ω) Im(ω)

5 DI −1.98856262 −0.00968749 +10.90342057 +0.00145905
CF −1.98856262 −0.00968749 +10.90342057 +0.00145905

6 DI −2.24470575 −0.00198696 +14.09001520 +0.00050399
CF −2.24470575 −0.00198696 +14.09001520 +0.00050399

7 DI −2.47088637 −0.00029125 +17.36697101 +0.00017138
CF −2.47088637 −0.00029125 +17.36697101 +0.00017138
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Fig. 4. Real (left) and imaginary (right) components of the fundamental QNM frequencies, plot-
ted as a function of rmin, for C = 0.5 and m = 5, 6, 7. These results were obtained via the CF
method.

values of the azimuthal number m and rmin, obtained using two different frequency-
domain methods, namely the direct integration (DI) and continued fraction (CF)
methods. Real and imaginary parts of the QNM frequencies are plotted in Fig. 4,
as functions of rmin, for different values of the azimuthal number m, obtained using
the CF method, considering a circulation C = 0.5.

From the results exhibited in Table 1, it can be seen that as the azimuthal
number m increases, the magnitude of the real (imaginary) part of the QNM fre-
quencies increases (decreases). Moreover, from the plots exhibited in Fig. 4, we find
that as rmin decreases, the magnitude of the real and imaginary parts of the QNM
frequencies increase (decrease) for unstable (stable) modes. This behavior of the
imaginary part can be clearly seen in the inset of the right panel of Fig. 4.

5.3. Acoustic clouds

As analogues to the clouds around rotating BHs, described in Sec. 4.3.2, we may
have acoustic clouds around the draining bathtub. Taking advantage of the symme-
tries of the draining bathtub spacetime, characterized by Eq. (44), we can search for
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solutions of the Klein–Gordon equation (41), assuming the separation of variables

Φm(r, φ, t) = ei(mφ−ωt)ζm(r). (53)

The radial function ζm(r) obeys the ordinary differential equation

h(r)
r

d

dr

[
rh(r)

dζm
dr

]
+

[
ω2 − 2Cmω

r2
− m2

r2

(
1 − D2 + C2

r2

)]
ζm = 0. (54)

Using the tortoise coordinate, defined by

d

dr∗
≡ h(r)

d

dr
, (55)

we can rewrite Eq. (54) as the Schrödinger-like equation

d2

dr2∗
um +

[(
ω − Cm

r2

)2

− V dbt
m (r)

]
um = 0, (56)

where um ≡ √
rζm, and we have defined the effective potential

V dbt
m (r) = h(r)


m2 − 1

4
r2

+
5D2

4r2


. (57)

Considering the asymptotic limit of Eq. (56), we find the solutions

ζωm(r) ∼
{
e−i(ω−ωc)r∗ , for r → rH ,

eiωr∗ , for r → ∞.
(58)

In order to have clouds we must choose ω = ωc ≡ mΩH , and enclose the system
inside a “barrier” located at r = r0. At the “barrier”, we impose suitable boundary
conditions, usually chosen to be of Dirichlet or Neumann type.319

In Fig. 5, we analyze the behavior of the acoustic clouds by plotting the values
of the frontier location r0 as a function of the angular velocity at the horizon ΩH ,

0
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Fig. 5. Acoustic clouds around the draining bathtub surrounded by a boundary at r = r0, with
angular velocity at the horizon ΩH , for n = 1 and different values of m, for Dirichlet (left panel)
and Neumann (right panel) boundary conditions. The number n denotes the node number of the
radial function. Similar figures, but with different choices of the clouds quantum numbers can be
found in Benone et al.321,322
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Fig. 6. Real part of Φ in the x, y plane, for r0/rH = 20, n = 1 and m = 2. The left panel displays
the case for Dirichlet boundary conditions, with C/rH = 0.21, while the right panel displays the
case for Neumann boundary conditions, with C/rH = 0.17.

for different choices of the azimuthal number m. We see that, for a fixed position
r0 of the barrier, the acoustic clouds occur for smaller values of ΩH , as we increase
the value of m.

Three-dimensional plots of the radial and azimuthal profiles of acoustic clouds
are shown in Fig. 6, for Dirichlet (left panel) and Neumann (right panel) boundary
conditions.

6. Concluding Remarks

The fantastic conceptual and formal elegance of Einstein’s gravity hides a tremen-
dous complexity when it is applied to realistic, dynamical systems. Quite often, all
hope of finding elegant analytic solutions is lost. Then, to tackle this complexity,
one needs to resort to numerical solutions. This necessity is now well understood
by the scientific community and with the current available techniques, together with
the ones under development, there is a strong belief that a lot can be learned about
the most elegant physical theory — or generalizations thereof — in the strong field,
dynamical regime. We foresee interesting times ahead.
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144. T. Damour and G. Esposito-Farése, Class. Quantum Grav. 9 (1992) 2093.
145. T. Chiba, T. Harada and K.-I. Nakao, Prog. Theor. Phys. Suppl. 128 (1997) 335.
146. Y. Fujii and K.-I. Maeda, The Scalar–Tensor Theory of Gravitation (Cambridge

University Press, UK, 2003).
147. V. Faraoni, Cosmology in Scalar Tensor Gravity (Springer, Berlin, 2004).
148. C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24 (2015) 1542014,

arXiv:1504.08209 [gr-qc].
149. T. P. Sotiriou, Lect. Notes Phys. 892 (2015) 3, arXiv:1404.2955 [gr-qc].
150. P. G. Bergmann, Int. J. Theor. Phys. 1 (1968) 25.
151. R. V. Wagoner, Phys. Rev. D 1 (1970) 3209.
152. P. Jordan, Z. Phys. 157 (1959) 112.
153. M. Fierz, Helv. Phys. Acta 29 (1956) 128.
154. C. Brans and R. Dicke, Phys. Rev. 124 (1961) 925.
155. E. E. Flanagan, Class. Quantum Grav. 21 (2004) 3817, arXiv:gr-qc/0403063 [gr-qc].
156. T. P. Sotiriou, S. Liberati and V. Faraoni, Int. J. Mod. Phys. D 17 (2008) 399,

arXiv:0707.2748 [gr-qc].
157. C. M. Will, Living Rev. Rel. 17 (2014) 4, arXiv:1403.7377 [gr-qc].
158. J. Alsing, E. Berti, C. M. Will and H. Zaglauer, Phys. Rev. D 85 (2012) 064041,

arXiv:1112.4903 [gr-qc].
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