625 research outputs found

    Approximating open quantum system dynamics in a controlled and efficient way: A microscopic approach to decoherence

    Full text link
    We demonstrate that the dynamics of an open quantum system can be calculated efficiently and with predefined error, provided a basis exists in which the system-environment interactions are local and hence obey the Lieb-Robinson bound. We show that this assumption can generally be made. Defining a dynamical renormalization group transformation, we obtain an effective Hamiltonian for the full system plus environment that comprises only those environmental degrees of freedom that are within the effective light cone of the system. The reduced system dynamics can therefore be simulated with a computational effort that scales at most polynomially in the interaction time and the size of the effective light cone. Our results hold for generic environments consisting of either discrete or continuous degrees of freedom

    Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM

    Get PDF
    A new coupled GCM (SINTEX) has been developed. The model is formed by the atmosphere model ECHAM-4 and the ocean model ORCA. The atmospheric and oceanic components are coupled through OASIS. The domain is global and no flux correction is applied. In this study, we describe the ability of the coupled model to simulate the main features of the observed climate and its dominant modes of variability in the tropical Indo-Pacific. Three long experiments have been performed with different horizontal resolution of the atmospheric component in order to assess a possible impact of the atmosphere model resolution onto the simulated climate. Overall, the mean state is captured reasonably well, though the simulated SST tends to be too warm in the tropical Eastern Pacific and there is a model tendency to produce a double ITCZ. The model gives also a realistic representation of the temperature structure at the equator in the Pacific and Indian Ocean. The slope and the structure of the equatorial thermocline are well reproduced. Compared to the observations, the simulated annual cycle appears to be underestimated in the eastern equatorial Pacific, whereas a too pronounced seasonal variation is found in the Central Pacific. The main basic features of the interannual variability in the tropical Indo-Pacific region are reasonably well reproduced by the model. In the Indian Ocean, the characteristics of the simulated interannual variability are very similar to the results found from the observations. In the Pacific, the modelled ENSO variability appears to be slightly weaker and the simulated period a bit shorter than in the observations. Our results suggest that, both the simulated mean state and interannual variability are generally improved when the horizontal resolution of the atmospheric mode component is increased

    Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations

    Get PDF
    Recent studies point to the sensitivity of mid-latitude winter climate to Arctic sea ice variability. However, there remain contradictory results in terms of character and timing of Northern Hemisphere large-scale circulation features to Arctic sea ice changes. This study assesses the impact of realistic late autumn eastern Arctic sea ice anomalies on atmospheric wintertime circulation at mid-latitudes, pointing to a hidden potential for seasonal predictability. ​Using a dynamical seasonal prediction system, an ensemble of seasonal forecast simulations of 23 historical winter seasons is run with reduced November sea ice cover in the Barents-Kara Seas, and is compared to the respective control seasonal hindcast simulations set. ​A non energy-conserving approach is adopted for achieving the desired sea ice loss, with artificial heat being added conditionally to the ocean surface heat fluxes so as to inhibit the formation of sea ice during November. Our results point to a robust atmospheric circulation response in the North Pacific sector, similar to previous findings on the multidecadal timescale. Specifically, an anticyclonic anomaly at upper and lower levels is identified over the eastern midlatitude North Pacific, leading to dry conditions over the North American southwest coast. The responses are related to a re-organization (weakening) of west-Pacific tropical convection and interactions with the tropical Hadley circulation. ​A possible interaction of the poleward-shifted Pacific eddy-driven jet stream and the Hadley cell is discussed​. ​The winter circulation response in the Euro-Atlantic sector is ephemeral in character and statistically significant in January only, corroborating previous findings of an intermittent and non-stationary Arctic sea ice-NAO link during boreal winter. These results ​aid our understanding of the seasonal impacts of reduced eastern Arctic sea ice on the midlatitude atmospheric circulation with implications for seasonal predictability in wintertime

    Tooth Cementum Thickness as a Method of Age Estimation in the Forensic Context

    Get PDF
    Estimating age at death is a key element in the process of human identification of skeletal remains. The interest in dental cementum stems from its increase in thickness throughout life and, at the same time, from the fact it should not be affected by remodeling processes. Since the age assessment is particularly difficult in adults when using traditional anthropological methods on the skeleton, we tested a dental method based on maximum cementum thickness and developed new regression equations. We microscopically analyzed the histological sections of dental roots from a sample of 108 permanent teeth with known age and sex. Age at the time of dental extraction was in the range of 18–84 years. Our findings show that there were no differences in thickness between sexes, dental arch, and mono-and pluriradicular teeth. Separate regression equations were developed for individuals in the whole age range and individuals under 45 years. The equations were then tested on a hold-out sample from the same Mediterranean population demonstrating higher reliability for the equation developed for those under 45. Conversely, due to the increased error in age estimation in individuals over 45, this method should be used with caution in the forensic con-text when skeletal remains presumably belong to elderly individuals

    On the Influence of ENSO on Sudden Stratospheric Warmings

    Get PDF
    Using the extended ERA5 reanalysis and three state-of-the-art models, this study explores how El Niño-Southern Oscillation (ENSO) can influence the total frequency, seasonal cycle and preconditioning of sudden stratospheric warmings (SSWs). Reanalysis data shows that in the last seven decades, winters with SSWs were more common than winters without, regardless El Niño (EN) or La Niña (LN) occurrence or the ENSO/SSW definitions. In agreement with previous studies, our models tend to simulate a linear ENSO-SSW relationship, with more SSWs for EN, around mid-winter (January–February) as in reanalysis, and less for LN when compared to neutral conditions. Independently of ENSO, the main tropospheric precursor of SSWs appears to be an anomalous wave-like pattern over Eurasia, but it is dominated by wavenumber 1 (WN1) for EN and shows an enhanced wavenumber 2 (WN2) for LN. The differences in this Eurasian wave pattern, which is largely internally generated, emerge from the distinct configuration of the background, stationary wave pattern induced by ENSO in the North Pacific, favoring a stronger WN1 (WN2) component during EN (LN). Our results suggest that the ENSO-forced signal relies on modulating the seasonal-mean polar vortex strength, becoming weaker and more displaced (stronger and more stable) for EN (LN), while ENSO-unforced wave activity represents the ultimate trigger of SSWs. This supports the view that ENSO and SSWs are distinct sources of variability of the winter atmospheric circulation operating at different time-scales and may reconcile previous findings in this context
    • …
    corecore