85 research outputs found

    Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia

    Get PDF
    Magnetic iron oxide nanoparticles (IONPs) have gained momentum in the field of biomedical applications. They can be remotely heated via alternating magnetic fields, and such heat can be transferred from the IONPs to the local environment. However, the microscopic mechanism of heat transfer is still debated. By X-ray total scattering experiments and first-principles simulations, we show how such heat transfer can occur. After establishing structural and microstructural properties of the maghemite phase of the IONPs, we built a maghemite model functionalized with aminoalkoxysilane, a molecule used to anchor (bio)molecules to oxide surfaces. By a linear response theory approach, we reveal that a resonance mechanism is responsible for the heat transfer from the IONPs to the surroundings. Heat transfer occurs not only via covalent linkages with the IONP but also through the solvent hydrogen-bond network. This result may pave the way to exploit the directional control of the heat flow from the IONPs to the anchored molecules─i.e., antibiotics, therapeutics, and enzymes─for their activation or release in a broader range of medical and industrial applications

    Purification and characterization of the alcohol dehydrogenase from a novel strain of Bacillus stearothermophilus growing al 70° C.

    No full text
    The biocatalysts isolated from thermophilic microorganisms are the object of ever-growing scientific interest for (i) the comprehension of the molecular basis of their thermal tolerance, and (ii) their use in different bio-industrial fields. Here we report the purification and characterization of an alcohol dehydrogenase (designated ADH-hT) from the novel strain LLD-R of Bacillus stearothermophilus which grows at 70 degrees C. ADH-hT was obtained in pure form by anion exchange chromatography and two affinity chromatographies, with a final yield of about 30%. ADH-hT was found to be a tetramer of 37 kDa-subunits, and to have a pI of 4.9. ADH-hT displayed a broad substrate specificity; its activity was highest for aldehydes, and decreased progressively for alcohols and ketones. ADH-hT was endowed with catalytic activity and resistance in the presence of several denaturing agents (organic solvents, detergents, chaotropic agents). ADH-hT shared with ADH 1503 (the alcohol dehydrogenase from B. stearothermophilus strain NCA 1503 which grows at 55 degrees C) the optimal temperature of 65 degrees C, but it was more resistant than ADH 1503 towards heating. In conclusion, due to its stability and broad substrate specificity ADH-hT could be utilized in bio-industrial processes. Furthermore, we believe that ADH-hT could represent a good model system for studying the mechanism(s) which proteins exploit to gain heat resistance

    Identification of Rare Earth Elements (REEs) distribution patterns in the soils of Campania region (Italy) using compositional and multivariate data analysis

    No full text
    A big monitoring programme was carried out in Italy from 2015 to 2018 with the aim to assess the environmental conditions of the Campania region territory. Among the different environmental media, 7300 samples of topsoil (10–15 cm) were collected and analysed for 52 elements through an analytical methodology combining ICP-MS and ICP-ES. Specifically, this paper focuses on the geochemical distribution of La, Ce, Sc and Y with implications for the whole REEs group. Machine learning techniques, Compositional Data Analysis (CoDA) and multivariate statistics were used in order to understand the behaviour of these elements in different geogenic and anthropogenic conditions and their interaction with other elements. Lasso regression (LR) was performed to select the variables most related with REEs. Subsequently, robust Principal Component Analysis (rPCA) was performed, using 20 elements selected through the LR to identify the main geochemical associations. Finally, using rPCA scores and additive log-ratio (alr) coordinates, distribution maps were generated to assess the patterns of the REEs sources identified. The results show that median concentration values of the investigated elements (Ce = 80.3, La = 41.3, Y = 15.4 and Sc = 3.3 mg/kg) are significantly higher than those of European and Italian soils. The type of lithologic substrate and the degree of soil alteration are the main factors responsible of the REEs concentrations. Cerium and La have the same behaviour and show higher concentrations in volcanic soils, especially the more altered ones, which are associated with high values of low-mobile elements like Th, Fe, Hf, Zr, Mn, or where the pyroclastic cover lies on limestone rocks. Otherwise, Sc is enriched in soils formed on siliciclastic and calcareous rocks while Y shows an intermediate behaviour between Sc and, La and Ce. This study has shown that Th, Fe and Mn are the elements most closely related to REEs in soils of Campania region, therefore they can be used to estimate their natural concentration in soil

    Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence

    No full text
    Bright green emitters with adjustable photoluminescence (PL) maxima in the range of 530-535 nm and full-width at half-maxima (FWHM) of \uf03c25 nm are particularly desirable for applications in television displays and related technologies. Towards this goal, we have developed a facile synthesis of highly monodisperse, cubic-shaped formamidinium lead bromide nanocrystals (FAPbBr3 NCs) with perovskite crystal structure, tunable PL in the range of 470-540 nm by adjusting the nanocrystal size (5-12 nm), high quantum yield (QY) of up to 85% and PL FWHM of \uf03c22 nm. High QYs are also retained in films of FAPbBr3 NCs. In addition, these films exhibit low thresholds of 14\uf0b12 \ub5J cm-2 for amplified spontaneous emission

    Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils

    No full text
    This work discusses the results of a geochemical survey conducted in the Salerno urban area to determine the sources patterns of major, minor, trace and ultra-trace elements in soils. In particular, the study focused on elements that are potentially toxic and listed in the environmental Italian legislation (D.L. 152/06), in order to effectively monitoring an important aspect of environment health. A total of 151 topsoil samples were collected, air-dried and sieved (<2 mm). After aqua regia digestion the samples were analyzed for 42 elements by ICP-MS and ICP-AES. Geostatistical analyses were carried out in order to show the single element spatial distribution and the distribution of factor scores elemental associations from R-mode factor analysis. In performing factor analysis, the additive logratio (alr) transformation was applied to the whole dataset in order to deal with the closure effects of the investigated geochemical data, avoiding artefacts and spurious correlation. The use of alr-transformed data instead of the normal data in the factor analysis allowed for a better interpretation of the distribution patterns, since this produced four factor models which, once mapped, were easier to interpret. The study revealed that major and minor elements (Al, Ca, Fe, K, Mg, Na, P, S and Ti) have a perfectly natural distribution with no discernible association to any human activity or presence. In contrast, many trace and ultra-trace elements (Ag, As, Au, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Pd, Pt, Rh, Sb, Sn, Tl, V and Zn) show anomalous concentration values located almost exclusively in highly inhabited areas, industrial sites and along high traffic roads. Other trace and ultra-trace elements (B, Bi, Ga, La, Sc, Se, Sr, Te, Th, Tl, U and W) show concentrations compatible with the natural background levels. Some potentially toxic elements (e.g. Pb and Zn) reach concentration levels tens of times higher than the legal limits in the busiest areas of the city. Exposure to high concentrations of these contaminants may cause health problems to people living in these zones

    Potentially toxic elements in soils of Campania region (Southern Italy): Combining raw and compositional data

    No full text
    Concern about health effect of Potentially Toxic Elements (PTEs) has led to an increasing global attention about their concentration levels in the environment. Soil geochemistry has been widely used as a tool for environment monitoring. This study investigates topsoil geochemistry of Campania region (Southern Italy) and (i) allows a reliable overview of the PTEs (As, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn, Tl, V and Zn) concentration in soils, (ii) enable the investigation of the main factors governing PTEs geochemical variation on a regional scale. Over 7300 topsoil samples were collected from the survey area, which occupies an area of about 13.600 km2. Samples were analyzed for pseudo-total content of 53 elements (major and trace elements) by ICP-MS after aqua regia digestion. Data analysis was performed taking into account both raw data and their compositional nature as a tool for the PTEs environmental evaluation and origin investigation. As, Be, Cu, Pb, Sn, Tl, V and Zn in soils of Campania region show higher median concentration levels than Italian and European ones. In addition, all PTEs exceed the residential/ recreational intervention limit (CSCA) set by Italian legislation. The variation structure of compositional data had been visualized using compositional (clr) biplots and displaying the individual sample observations according to their parent rock. Clr-biplot analysis allowed us to recognize geochemical processes controlling most of soil chemical signatures. Multivariate analysis has been performed and three principal components were determined. PC1 is controlled by enrichment of elements deriving from dominant parent rocks of the area (siliciclastics and volcanoclastics). On the other hand, PC1 reveals the presence of an elemental association dominated by Na, K, U, Th, Zr, Ti, Tl and Be (clr variables), which are pathfinder element of soils developed from volcanic parent material. The second (PC2) component well discriminates the geochemical mobility of the elements in soils. The third (PC3) component reveal the presence of an anthropogenic association (Hg, Sb, Pb, Sn, Au, Ag) which depict a marginal contribution in soil geochemistry of the study area. The generation of clr-biplot helped us in a deeper interpretation of single element spatial distribution patterns. As, Be, Sn, Tl and V spatial distribution shows dominance in soil developed from volcanic products of the main volcanic complexes. Our study showed that element such as Be, Sn and Tl naturally exceed the contamination thresholds in almost the entire territory, due to a quite elevated background concentration values. Hence, Campania region con not be considered entirely contaminated (at this scale) by such elements. Co, Cd, Cr and Ni are more abundant where siliciclastic parent rocks occur
    • …
    corecore