30 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Morphological and climatic aspects of the initiation of the San Mango Sul Calore debris avalanche in Southern Italy

    No full text
    On the 10th November 2010 a high-velocity landslide occurred in the San Mango sul Calore municipality (Southern Italy). The event triggered from the North facing side of the Tuoro Mt. after a rainstorm, involved the pyroclastic and colluvial materials that covered part of the hill-slope. The debris avalanche destroyed an occupied house and damaged several service lines. Field surveys shown that it affected only the deforested part of the slope and its source area was located downslope a man-made cut. We analyzed rainfall data of the climatic station located about 1 km far from the debris avalanche at about 600 m above the sea level. The landslide occurred after about 63 h of rainfall, after the rainstorm. The cumulative rain recorded during the 3 days storm was about 235 mm and the alert threshold of the rainstorm hazard index, has been exceeded. . © Springer International Publishing Switzerland 2015

    Calculating Economic Flood Damage through Microscale Risk Maps and Data Generalization: A Pilot Study in Southern Italy

    No full text
    In recent decades, floods have caused significant loss of human life as well as interruptions in economic and social activities in affected areas. In order to identify effective flood mitigation measures and to suggest actions to be taken before and during flooding, microscale risk estimation methods are increasingly applied. In this context, an implemented methodology for microscale flood risk evaluation is presented, which considers direct and tangible damage as a function of hydrometric height and allows for quick estimates of the damage level caused by alluvial events. The method has been applied and tested on businesses and residential buildings of the town of Benevento (southern Italy), which has been hit by destructive floods several times in the past; the most recent flooding occurred in October 2015. The simplified methodology tries to overcome the limitation of the original method-the huge amounts of input data-by applying a simplified procedure in defining the data of the physical features of buildings (e.g., the number of floors, typology, and presence of a basement). Data collection for each building feature was initially carried out through careful field surveys (FAM, field analysis method) and subsequently obtained through generalization of data (DGM, data generalization method). The basic method (FAM) allows for estimating in great detail the potential losses for representative building categories in an urban context and involves a higher degree of resolution, but it is time-consuming; the simplified method (DGM) produces a damage value in a shorter time. By comparison, the two criteria show very similar results and minimal differences, making generalized data acquisition most efficient

    Correlation of multiplatform sar-data for multitemporal slope instability analysis: the Paupisi case study (Benevento Province, southern Italy)

    No full text
    The Benevento Province (southern Italy) has been historically affected by soil erosion and ground deformation (i.e. landslides; Revellino et alii, 2019), as testified by documents and reports which describe damage scenario, social effects, surveys and measures carried out. Revellino et alii (2010) highlighted as the landslide index, defined as the ratio of areas affected by landslides over total areas, reaches up to 90%. Earth flows make up about 46% of these landslides, involving structurally complex geologic formations and often responsible for damaging human infrastructures (e.g. roads and service lines; Guerriero et alii, 2016; Maresca et alii, 2022). As a result, the province has widespread problems in management of the landslide hazard, due to the activation (and reactivation) of phenomena connected to both rainfall and seismic events. In order to reconstruct state of activity maps for the Benevento Province, a multitemporal analysis of multiplatform satellite data was carried out, with a resolution of cells of 20×20 m. In particular, PSInSAR (ERS 1&2 for the time-span 1992-2000, ENVISAT for 2002-2010, and RADARSAT for 2003-2007) and ISBAS data (Sentinel-1 for 2017-2020), were first treated by a grid-based approach to uniform the PS data and subsequently, by a multiplatform approach defining weighted average velocity (VWA) maps on the base of the extent of the area with data availability. Finally, a multiplatform activity-matrix approach allowed the definition of landslide activity maps based on a velocity threshold of ± 3 mm/y, derived by VWA maps. Specifically, velocity threshold allowed to discriminate for each cell of the analyzed area i) stable cells (velocities between ± 3 mm/y), ii) unstable cells (velocities greater than ± 3 mm/y), iii) cells with no data (unclassified). The multiplatform activity-matrix approach at provincial scale was used to identify and analyze unstable area (hotspots), currently involved in active deformation processes. Among them, the Paupisi municipality (Benevento Province) was identified as critical for the involvement of built-up areas and infrastructures in landslide deformation processes. For that reason, Paupisi area was selected as study case and a detailed analysis of the PS distribution as well as reconstruction and evaluation of deformation trend were carried out. Finally, a relation between land deformation and rainfall events was also investigated

    Long-Term Hydrological Modelling of Pyroclastic Soil Mantled Slopes for Assessing Rainfall Thresholds Triggering Debris Flows: The Case of the Sarno Mountains (Campania—Southern Italy)

    No full text
    Air-fall pyroclastic deposits covering Campanian mountain slopes (southern Italy) are very prone to instability under heavy and prolonged rainfall. In such a geo-hazard framework, to understand hydrological dynamics of pyroclastic mantle is a step further toward the deterministic assessment of rainfall thresholds and landslide hazard. In this research, the hydrological modelling of a pyroclastic soil mantled slope of the Sarno Mountains is proposed to assess the role of antecedent hydrological conditions on rainfall triggering debris flows. The approach is based on the finite difference modelling, from seasonal to inter-annual timescales, of unsaturated/saturated flows occurring into the pyroclastic mantle upslope of a source area of a debris flow. Modelling results were calibrated by means of field measurements achieved by a tensiometer monitoring station. Among the main results, the pressure head distribution into the pyroclastic deposits showed a dominant unsaturated condition and a relevant seasonal variation extending below the root zone and down to the bedrock interface, about 4 m deep. This hydrological regime is attributable both to the distinctive water retention properties of pyroclastic soils and to the existence of a deciduous forest, which concentrates water losses due to evapotranspiration during the dry season. This behavior highlights the remarkable role of antecedent hydrological conditions as a not negligible predisposing factor to instability during short and heavy rainstorms
    corecore