172 research outputs found

    Metareasoning for Heuristic Search Using Uncertainty

    Get PDF
    Heuristic search methods are widely used in many real-world autonomous systems. Yet, people always want to solve search problems that are larger than time allows. To address these challenging problems, even suboptimally, a planning agent should be smart enough to intelligently allocate its computational resources, to think carefully about where in the state space it should spend time searching. For finding optimal solutions, we must examine every node that is not provably too expensive. In contrast, to find suboptimal solutions when under time pressure, we need to be very selective about which nodes to examine. In this dissertation, we will demonstrate that estimates of uncertainty, represented as belief distributions, can be used to drive search effectively. This type of algorithmic approach is known as metareasoning, which refers to reasoning about which reasoning to do. We will provide examples of improved algorithms for real-time search, bounded-cost search, and situated planning

    Metareasoning for Heuristic Search Using Uncertainty

    Get PDF
    Heuristic search methods are widely used in many real-world autonomous systems. Yet, people always want to solve search problems that are larger than time allows. To address these challenging problems, even suboptimally, a planning agent should be smart enough to intelligently allocate its computational resources, to think carefully about where in the state space it should spend time searching. For finding optimal solutions, we must examine every node that is not provably too expensive. In contrast, to find suboptimal solutions when under time pressure, we need to be very selective about which nodes to examine. In this dissertation, we will demonstrate that estimates of uncertainty, represented as belief distributions, can be used to drive search effectively. This type of algorithmic approach is known as metareasoning, which refers to reasoning about which reasoning to do. We will provide examples of improved algorithms for real-time search, bounded-cost search, and situated planning

    Redesigning Empty

    Get PDF
    Flood risk and the widespread shutoff of residential water utilities are looming threats to the City of Detroit. Supplementary infrastructure as a safeguard against these shutoffs provides an exploratory alternative to water management on the premise that water access is a fundamental human right. The theoretical application of compensatory infrastructure in the North End neighborhood demonstrates the system’s adaptability to differing neighborhood settings. The system is replenished by the water cycle via capture components that are integrated into community landscapes and buildings, whether they are vacant or occupied. Residents’ direct access to the system maximizes opportunities for agricultural use, infrastructure extension, and most importantly, protection of the human right to safe drinking water.http://deepblue.lib.umich.edu/bitstream/2027.42/120410/1/Gu_RedesigningEmpty.pd

    Connection Incentives in Cost Sharing Mechanisms with Budgets

    Full text link
    In a cost sharing problem on a weighted undirected graph, all other nodes want to connect to the source node for some service. Each edge has a cost denoted by a weight and all the connected nodes should share the total cost for the connectivity. The goal of the existing solutions (e.g. folk solution and cycle-complete solution) is to design cost sharing rules with nice properties, e.g. budget balance and cost monotonicity. However, they did not consider the cases that each non-source node has a budget which is the maximum it can pay for its cost share and may cut its adjacent edges to reduce its cost share. In this paper, we design two cost sharing mechanisms taking into account the nodes' budgets and incentivizing all nodes to report all their adjacent edges so that we can minimize the total cost for the connectivity.Comment: arXiv admin note: substantial text overlap with arXiv:2201.0597

    Cost Sharing under Private Costs and Connection Control on Directed Acyclic Graphs

    Full text link
    We consider a cost sharing problem on a weighted directed acyclic graph (DAG) with a source node to which all the other nodes want to connect. The cost (weight) of each edge is private information reported by multiple contractors, and among them, only one contractor is selected as the builder. All the nodes except for the source need to share the total cost of the used edges. However, they may block others' connections to the source by strategically cutting their outgoing edges to reduce their cost share, which may increase the total cost of connectivity. To minimize the total cost of connectivity, we design a cost sharing mechanism to incentivize each node to offer all its outgoing edges and each contractor to report all the edges' weights truthfully, and show the properties of the proposed mechanism. In addition, our mechanism outperforms the two benchmark mechanisms

    Efficient Spiking Neural Networks with Radix Encoding

    Full text link
    Spiking neural networks (SNNs) have advantages in latency and energy efficiency over traditional artificial neural networks (ANNs) due to its event-driven computation mechanism and replacement of energy-consuming weight multiplications with additions. However, in order to reach accuracy of its ANN counterpart, it usually requires long spike trains to ensure the accuracy. Traditionally, a spike train needs around one thousand time steps to approach similar accuracy as its ANN counterpart. This offsets the computation efficiency brought by SNNs because longer spike trains mean a larger number of operations and longer latency. In this paper, we propose a radix encoded SNN with ultra-short spike trains. In the new model, the spike train takes less than ten time steps. Experiments show that our method demonstrates 25X speedup and 1.1% increment on accuracy, compared with the state-of-the-art work on VGG-16 network architecture and CIFAR-10 dataset

    Quantitative proteomic analysis of LPS-induced differential immune response associated with TLR4 Polymorphisms by multiplex amino acid coded mass tagging

    Get PDF
    Polymorphisms at Toll-like receptor 4 (TLR4) gene have been found to be associated with immune disorders. A murine macrophage cell line GG2EE derived from C3H/HeJ mice with a polymorphism site at TLR4 is hyposensitive to lipopolysacchride (LPS). To study the molecular base of diverse TLR4-mediated immune responses, the proteomic changes in both TLR4-deficient and –wild-type cell lines in response to the same LPS challenge were quantitatively compared by using multiplex amino acid coded mass-tagging (AACT)/SILAC-assisted mass spectrometry (MS). This strategy allows encoding of two distinct cell populations with different stable isotope-tagged lysine residues as the ‘in-spectra’ quantitative markers. In MS analysis of tryptic peptides derived from the equally mixed three cell populations, the lysine-containing peptides originated from two LPS stimulated cell populations can be clearly distinguished by their different mass shifts from the un-stimulated and unlabeled counterpart. The LPS-induced differential protein expression in TLR4 –deficient and –wild-type proteomes were obtained by comparing the intensities of isotopically encoded peptides. Among the more than 900 proteins identified, 35 were found to be deregulated at different levels in these two cell lines stimulated by LPS. This multiplex mass-tagging methodology can be readily extended to other comparative proteomic quantitation of different cell populations

    CDFI: Cross Domain Feature Interaction for Robust Bronchi Lumen Detection

    Full text link
    Endobronchial intervention is increasingly used as a minimally invasive means for the treatment of pulmonary diseases. In order to reduce the difficulty of manipulation in complex airway networks, robust lumen detection is essential for intraoperative guidance. However, these methods are sensitive to visual artifacts which are inevitable during the surgery. In this work, a cross domain feature interaction (CDFI) network is proposed to extract the structural features of lumens, as well as to provide artifact cues to characterize the visual features. To effectively extract the structural and artifact features, the Quadruple Feature Constraints (QFC) module is designed to constrain the intrinsic connections of samples with various imaging-quality. Furthermore, we design a Guided Feature Fusion (GFF) module to supervise the model for adaptive feature fusion based on different types of artifacts. Results show that the features extracted by the proposed method can preserve the structural information of lumen in the presence of large visual variations, bringing much-improved lumen detection accuracy.Comment: 7 pages, 4 figure

    The Role of XPG in Processing (CAG)n/(CTG)n DNA Hairpins

    Get PDF
    BACKGROUND: During DNA replication or repair, disease-associated (CAG)n/(CTG)n expansion can result from formation of hairpin structures in the repeat tract of the newly synthesized or nicked DNA strand. Recent studies identified a nick-directed (CAG)n/(CTG)n hairpin repair (HPR) system that removes (CAG)n/(CTG)n hairpins from human cells via endonucleolytic incisions. Because the process is highly similar to the mechanism by which XPG and XPF endonucleases remove bulky DNA lesions during nucleotide excision repair, we assessed the potential role of XPG in conducting (CAG)n/(CTG)n HPR. RESULTS: To determine if the XPG endonuclease is involved in (CAG)n/(CTG)n hairpin removal, two XPG-deficient cell lines (GM16024 and AG08802) were examined for their ability to process (CAG)n/(CTG)n hairpins in vitro. We demonstrated that the GM16024 cell line processes all hairpin substrates as efficiently as HeLa cells, and that the AG08802 cell line is partially defective in HPR. Analysis of repair intermediates revealed that nuclear extracts from both XPG-deficient lines remove CAG/CTG hairpins via incisions, but the incision products are distinct from those generated in HeLa extracts. We also show that purified recombinant XPG protein greatly stimulates HPR in XPG-deficient extracts by promoting an incision 5\u27 to the hairpin. CONCLUSIONS: Our results strongly suggest that 1) human cells possess multiple pathways to remove (CAG)n/(CTG)n hairpins located in newly synthesized (or nicked) DNA strand; and 2) XPG, although not essential for (CAG)n/(CTG)n hairpin removal, stimulates HPR by facilitating a 5\u27 incision to the hairpin. This study reveals a novel role for XPG in genome-maintenance and implicates XPG in diseases caused by trinucleotide repeat expansion
    • …
    corecore