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Abstract

Polymorphisms at Toll-like receptor 4 (TLR4) gene have been found to be associated with 

immune disorders. A murine macrophage cell line GG2EE derived from C3H/HeJ mice with a 

polymorphism site at TLR4 is hyposensitive to lipopolysacchride (LPS). To study the molecular 

base of diverse TLR4-mediated immune responses, the proteomic changes in both TLR4-deficient 

and –wild-type cell lines in response to the same LPS challenge were quantitatively compared by 

using multiplex amino acid coded mass-tagging (AACT)/SILAC-assisted mass spectrometry 

(MS). This strategy allows encoding of two distinct cell populations with different stable isotope-

tagged lysine residues as the ‘in-spectra’ quantitative markers. In MS analysis of tryptic peptides 

derived from the equally mixed three cell populations, the lysine-containing peptides originated 

from two LPS stimulated cell populations can be clearly distinguished by their different mass 

shifts from the un-stimulated and unlabeled counterpart. The LPS-induced differential protein 

expression in TLR4 –deficient and –wild-type proteomes were obtained by comparing the 

intensities of isotopically encoded peptides. Among the more than 900 proteins identified, 35 were 

found to be deregulated at different levels in these two cell lines stimulated by LPS. This 

multiplex mass-tagging methodology can be readily extended to other comparative proteomic 

quantitation of different cell populations.

1 Introduction

Toll Like Receptors (TLRs) are critical sentinel surface receptors expressed on immune cells 

that recognize molecular motifs derived from pathogens including virus, bacteria, fungi, and 

protozoan.[1] Upon stimulation, TLRs typically elicit a signaling cascade including MyD88-

IRAK-TRAF6-I-κB-NF-κB that ultimately leads to the production of proinflammatory 

cytokines and costimulatory molecules. Results from genetic knockout studies have firmly 

established the role of TLRs in initiating the innate responses toward various pathogens.[2]
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TLR4 is the most studied receptor among the 13 reported TLRs (11 in human and 13 in 

mice). TLR4 is mainly expressed on antigen presenting cells, such as macrophages and 

dendritic cells. The natural ligand of TLR4 is the lipopolysacchride (LPS) derived from the 

cell wall of Gram-negative bacteria. Endogenous ligand, HSP70, has also been reported to 

activate TLR4 pathway.[3] Upon activation, TLR4 is able to utilize two different adaptor 

proteins, MyD88 and TRIF, to elicit immune responses that characterized as the production 

of proinflammatory cytokines or the induction of type I interferons.[4] In clinic cases, a 

severe bacterial infection may release a large dose of LPS, which activates TLR4 pathway to 

produce high amount of proinflammatory cytokines, such as TNFα. TNFα has been held 

responsible for the septic shock, an often-fatal consequence of widespread bacterial 

infection and kills about 20,000 people in USA and one million people worldwide each year. 

Meanwhile, polymorphisms of TLR4 gene in population have also been reported to be 

associated with disease pathogenesis.[5] Therefore, many studies target at characterizing the 

TLR4-mediated downstream protein expression corresponding to particular inflammatory 

responses for revealing critical factors in modulating the signaling, and then developing 

possible strategies for therapeutic intervention.

Despite the tremendous effort on the study of TLR4-mediated inflammatory responses using 

both molecular and cellular biology approaches, there is a lack of systems data describing 

the altered pattern of protein expression associated with the genetic variations in TLR 

molecules. Qian et al quantitatively analyzed the proteome of human plasma following in 

vivo LPS administration.[6] However, since it is reported that not all of the responses 

exerted by LPS is TLR4-dependent, it will be of significant interest to investigate the TLR4-

dependent proteomic changes associated with clinically relevant TLR4 polymorphisms 

using more effective quantitative proteomic approaches.

To determine the proteome variations in different proteome states, a number of different 

isotope labeling techniques have been developed for improving the sensitivity, accuracy, and 

throughput of mass spectrometry (MS)-based comparative proteomics[7, 8], including 

isotope-coded affinity tagging (ICAT), 18O-labeling, and uniform or amino acid-specific 

metabolic labeling [9–13]. The basic scheme of these approaches is to utilize stable isotopes 

either enriched in chemical reagents or at particular amino acids as the ‘in-spectra’ 

quantitative markers to assist MS to analyze protein expression changes on large scale. 

Recently, an in vitro labeling technique named as iTRAQ, which tags the primary amine 

group in peptide digests, has recently been developed for quantitative analysis of proteomic 

changes in comparing up to 4 different cell populations.[14, 15] However, this peptide-based 

labeling strategy requests the preparation of individual samples involving protein separation 

and proteolysis, accurate equal mixing of proteolytic digests, etc. In addition, unsolved/co-

eluting peptide signals with different sequences can lead to overlapping signals in low mass 

reporter region that the quantitative measurements are based on. Metabolic labeling strategy 

such as amino acid coded mass-tagging (AACT)[12] or SILAC naturally introduces the tags 

for quantitative measurements in MS spectra through cell culture. The protein extracts from 

different cell pools can be processed in a single experiment format by equal mixing of cell 

numbers or protein concentration, thus the procedure minimizes the experimental variations, 

contaminations, artifacts, etc originated from separate sample processing[16–18]. 
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Meanwhile, by employing different stable isotopes or stable isotope-enriched amino acids, 

SILAC-based metabolic labeling can also quantify protein expression changes in 3 different 

cell populations.[19, 20] Using the multiplex technique, quantitative profiling of the 

proteome involved in S. Solfataricus,[19] and temporal quantitation of tyrosine 

phosphorylation after EGF stimulation in Hela cells [20] were accomplished.

Here we extended the multiplex AACT/SILAC-based quantitative method to simultaneously 

measure the relative proteomic changes in both TLR4-deficeint and –wild-type strains in 

response to same level LPS exposure. The LPS-induced differential changes in the proteome 

of TLR4-deficeint versus –wild-type macrophages were measured by comparing the MS 

intensities of the isotopically encoded peptides originated from the corresponding strains 

respectively, thus those proteins that showed the LPS-induced differential expression 

changes in both strains were identified. It is the first systems investigation of the proteomic 

immune responses in TLR4 –deficient and –wild-type macrophages.

2 Materials and Methods

2.1 Amino acid coded mass-tagging of macrophage cells

The C3H/HeN-derived macrophage cell line HeNC2 and the C3H/HeJ-derived macrophage 

cell line GG2EE were kindly provided by Dr. Steven B. Mizel (Wake Forest University, 

NC). The stable isotope-enriched amino acids were purchased from Cambridge Isotope 

Laboratories (Andover, MA). The murine macrophage GG2EE (TLR4-deficient) cell lines 

were grown in lysine-depleted D-MEM media supplemented with regular lysine and lysine-

d4 respectively. The HeNC2 (TLR4-wild type) cell line was grown in lysine-depleted D-

MEM media supplemented with lysine-13C6
15N2. After several cell doubling, the cells were 

harvested to examine the labeling efficiency by MS analysis as previously described [12].

2.2 Stimulation of macrophages

LPS (Sigma, St. Louis, MO) was added into the media with a final concentration of 500 

ng/ml to stimulate the corresponding macrophage cell lines. Following 20 hrs stimulation, 

the cell were harvested and washed with PBS buffer twice. To examine the LPS-inducing 

time course-dependent expression of particular proteins of interest by Western blotting 

experiments, the LPS-stimulated macrophage cells for different period of time were 

collected and harvested at different time points.

2.3 Protein extraction, separation, and LC-MS analysis

The protocol for cell lysis and protein extraction was the similar one as previously described 

[12]. Briefly, similar amounts of 10 million cells from each of the stimulated and un-

stimulated cells were suspended at 4×107 cells/ml in a lysis buffer (10 mM Hepes with pH at 

7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol, and protease inhibitors). 

Following cell lysis and protein extraction, the concentration of the soluble proteins 

extracted from the control GG2EE cells, the lysine-d4 labeled LPS-treated GG2EE cells, and 

the lysine-13C6
15N2 labeled LPS-treated HeNC2 cells, were measured by Bio-Rad DCRC 

protein assay kit following the manufacture instruction. Then, the protein mixtures from 

each cell population were mixed at 1:1:1, loaded onto, and separated by a 14 × 14 cm 12% 
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SDS PAGE. The separated proteins on a gel were cut into 62 bands and digested with 

trypsin (Promega, Madison, WI). The gel slices were destained with 50% acetonitrile and 

50% 50 mM NH4HCO3 mixture. The destained gel slices were then dehydrated using 

acetonitrile and followed by speed-vac for 20 min. Trypsin was added in a final 

concentration of 25 ng/µL, and the mixture was incubated overnight 37 °C. The tryptic 

peptides were extracted from gel slices in two steps. First, the gel slices were suspended in 

5% acetic acid solution and sonicated at 37 °C for 45 min. The supernatant was reserved in a 

fresh microcentrifuge tube on ice. The gel slices then continued to be extracted with 50% 

acetonitrle/5% acetic acid for an additional 45 min. Both supernatants were combined and 

dried by speed-vac. The samples were then re-suspended in a 0.1% TFA solution. The 

digested peptide mixtures were submitted to a nano-LC-MS/MS system (LC Packing 

Ultima, Dionex, Sunnyvale, CA) coupled with QSTAR XL mass spectrometer 

(AppliedBiosystems, Foster City, CA). 5 µl of samples was loaded into the LC column for 

separation. Mobile phase A is 0.1% formic acid and 5% acetonitrile. Mobile phase B is 0.1% 

formic acid and 95% acetonitrile. The gradient was kept at 5% B for 5 min, then ramped 

linearly from 5 to 50% B in 50 min, then jumped to 75% B and kept for 10 min. Then the 

gradient was set back to the start point and the column equilibrated for 10 min. The flow rate 

was 180 nL/min. The spray voltage was tuned to get stable background signals with the best 

signal-to-noise intensity. The two most intense ions with charge states between 2 to 4 in 

each survey scan were selected for the MS/MS experiment provided they passed the 

intensity threshold. The rolling collision energy feature was employed to fragment the 

peptide ions according to their charge states and m/z values.

2.4 Database searching and protein identification

The in-house licensed MASCOT (Version 2.0) server were used to interpret the LC-MS/MS 

data by searching against the Mus musculus protein sequence databases (2004.9.1) 

downloaded from the National Center for Biotechnology Information (NCBI) public ftp site. 

The lysine-d4 and lysine-13C6
15N2 modifications were added in the configuration file as 

static or variable modifications to constraint database searching. The parameters for 

database searching were setting as: (i) 0.2 Da mass error tolerance for both MS and MS/MS; 

(ii) variable modifications including phosphorylations on tyrosine/serine/threonine, 

oxidation of methionine and lysine-d4 and lysine-13C6
15N2; (iii) tryptic enzyme specificity 

and maximum 2 mis-cleavages; (iv) peaks with intensities less than 0.5% of the base peak in 

MS/MS were ignored for database searches; (v) no smoothing of spectra was applied. 

Proteins with 2 or more peptides with the matching score over 46 (p<0.05) were considered 

as positive identification. Only top rank peptide hits for given precursors were used for 

further protein identifications. Protein with 1 peptide match were manually validated by the 

following empirical rules: (i) both b- and y-series ions present in the spectrum; (ii) at least 4 

adjacent fragment ions are observed in either b or y-series ions; (iii) major peaks in a 

spectrum must be explained by b- or y-series ions, or neutral loss from those ions, or a- ions; 

(iv) the mass error for matched fragment ions should be in an increasing or decreasing trend, 

but not a fluctuant trend. Further, a decoyed protein sequence database (reversed sequence 

of the mouse protein sequence database) was used to revalidate the empirical rules in the 

protein identification based on a single peptide. The decoyed database search gave few hits 

that could pass the default threshold at MASCOT as the identified peptides. The false-
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positive rate indicated from the decoyed database search was less than 5% by the search 

using MASCOT only. Combined with the manual verification for all hits of the 

identifications based on single peptide sequence, the false-positive rate was then reduced to 

less than 1%.

2.5 Protein quantitation

The spectra of those peptide precursors containing the labeled amino acids were further 

analyzed for protein quantification. This process also validates the database search results as 

the quantitative measurements were obtained. We first averaged all the TOF MS spectra of 

the unlabled, lysine-d4 labeled, and lysine-13C6
15N2 labeled forms of the peptides over their 

chromatographic elution profile. The quantitative results obtained by comparing their mono-

isotopic peak intensities. Further, the background signals, including solvent cluster ions, 

chemical noise, can be subtracted in the Analyst QS, thus give rise of more reliable 

quantification results. To subtract background signals, two 10 sec-wide windows were 

selected before and after the chromatographic peak of the peptide of interest as the 

background reference, and the background was subtracted by Analyst QS. MSQuant (http://

msquant.sourceforge.net) developed by Mann’s group at University of Southern Denmark 

were used to validate the manual quantification results. Whereas, MSQuant can only read 

the apparent isotopic intensity of a peptide in a single scan without considering the 

background signals, and sum the intensity across the chromatographic peak profile. Taking 

the quantitative measurement of carbonic anhydrase as an example, MSQuant reported a 

ratio of 3.0 of lysine-d4 labeled form with a standard deviation of 1.26, a ratio of 46.8 of 

lysine-13C6
15N2 labeled form with a standard deviation of 17.12. The large standard 

deviation was probably caused by poor signal-to-noise level. Although automatic 

quantification program sometime can not provide accurate information and need manual 

intervention, it still improved the throughput.

2.6 Immunoblotting analysis

3 million cells per well were seeded in a six-well plate the day before stimulation. Cells 

were lyzed in a lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40) supplemented 

with protease inhibitor cocktail (Sigma, St. Louis, MO). Soluble extracts were loaded onto 

4–20% SDS-PAGE for separation. The proteins were transferred to a nitrocellulose 

membrane and incubated with antibodies against loading control--beta-actin (Abcam, 

Cambridge, MA), STAT1 (Stratagene, La Jolla, CA), and IL-1β (Abcam). The concentration 

and procedures of different antibodies were optimized according to the manufacture manual.

3 Results

3.1 Overall experimental design

The workflow of the multiplex quantitative proteomic approach using multiple isotope-

enriched amino acids for metabolic labeling is shown in Figure 1. The GG2EE cells were 

grown in a regular medium and the lysine-d4 supplemented medium respectively. The 

HeNC2 cells were grown in the lysine-13C6
15N2 supplemented medium. After 5–6 doubling 

(approximate 160–180 hrs), the labeling efficiency in cell culture using lysine-d4and 

lysine-13C6
15N2 were examined by MS analysis of the lysine-containing peptides. Briefly, 
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small amount of protein extracts from unlabeled GG2EE, lysine-d4labeled CG2EE, and 

lysine-13C6
15N2 labeled HeNC2 cells respectively were separated on a mini SDS PAGE gel. 

Three randomly selected bands were excised from each lane for in-gel digestion. The 

extracted peptides were submitted to LC-MS/MS analysis. After been cultured in the 

“heavy” lysine-supplemented media for 5–6 doubling, more than 95% of individual proteins 

were successfully labeled. As shown in Figure 2, the lysine-d4and lysine-13C6
15N2 labeled 

peaks are predominant peaks in the mass spectra. The intensity of the unlabeled peptide is 

less then 5% of the labeled peptide. After achieving the desirable labeling efficiency, both 

lysine-d4- labeled CG2EE and lysine-13C6
15N2-labeled HeNC2 cells were stimulated by 

same dose LPS. All of the three cell populations were harvested 20 hrs after LPS 

stimulation. 80 µg soluble protein extracts from each of the three cell populations were 

mixed together. Totally, 240 µg protein were loaded and separated on a 14 × 14 cm SDS gel. 

The collected MS/MS data were searched against the NCBI mouse protein sequence 

database by MASCOT search engine. All identified proteins were quantified manually. 

Selected targets of differentially expressed proteins then were chosen for validation by 

Western blotting.

3.2 Protein Identification

In this work, the proteins with 2 peptide matches with better than 95% probability were 

considered as validated identifications. Proteins with single peptide match at > 95% 

probability were validated by visual inspection of the MS/MS spectra. As a result, more than 

900 proteins were identified by the 1D SDS-PAGE LC-MS/MS platform which has been 

demonstrated as a generic and powerful tool in proteomic studies [20, 21]. Searching the 

collected MS/MS data with the decoyed protein sequence database showed the empirical 

rules we used in single peptide-based protein identification is highly strict. Although there 

are few single-peptide matches passed the threshold (p<0.05) determined by MASCOT 

when searching against the decoyed database, none of these matches passed the empirical 

rules described in the Materials and Methods section. Therefore, manual inspection of those 

single peptide matches with stringent criteria largely removed the false-positive 

identifications in the database search.

3.3 Protein quantification

Further, more than 500 proteins that contain specific AACT signatures, i.e., light or heavy 

lysine residues, were quantified. The expression levels of actin in these three different cell 

populations were estimated by a western blot (Figure 3a), which shows the expression of 

actin is not affected by LPS stimulation. Meanwhile, Figure 3b shows that the intensities of 

the isotope-encoded signals of actin peptide were the same derived from the equally mixed 

cell populations. On the other hand, interleukin 1β (IL-1β) showed a 25-fold increase in its 

expression in LPS-stimulated HeNC2 cells (Table 1 and Figure 4a). It is known that IL-1β is 

a marker of macrophage immune response under LPS stimulation and was identified in the 

protein band around 35 kDa. The intracellular form of IL-1β has been reported to migrate 

around 33 kDa, whereas the molecular mass of matured IL-1β is 17 kDa.[22] All of these 

results validated the accuracy of our experimental proteomics design. Twenty proteins were 

found largely up-regulated in the LPS-stimulated HeNC2 cells, whereas 5 of them were also 

significantly up-regulated in the LPS-stimulated GG2EE cells. Importantly, for those up-
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regulated proteins found in both strains, the differences in their expression in response to the 

LPS challenge were accurately measured simultaneously. The list of up-regulated proteins 

and the quantitative measurement of the level of LPS-induced expression changes are given 

in Table 1. In our results, several proteins known to be involved in LPS-induced immune 

response were found up-regulated. For example, BCR downstream signaling protein 1 was 

found up-regulated in both LPS-stimulated GG2EE and HeNC2 cells. Some proteins, such 

as aldo-keto reductase, RAS-related C3 botulinum substrate 2, heat shock protein 105, and 

interleukin 1 receptor antagonist, were specifically up-regulated in LPS-stimulated HeNC2 

cells. Interestingly, the multi-functional carbonic anhydrase was also found significantly up-

regulated, i.e., more than 3 folds in LPS-stimulated GG2EE and more than 50 folds in LPS-

stimulated HeNC2 cells.

3.4 Immunoblotting analysis

IL-1β and signal transducer and activator of transcription 1 (STAT1) were chosen for 

validating our quantitative proteomic profile of the LPS-induced differentially expressed 

proteins by Western blotting. As shown in Figure 5, the expression level of actin in both cell 

lines was not affected by LPS stimulation up to 20 hrs, and it was used as loading control for 

western blot. The basal level of IL-1β in GG2EE cells was not affected by LPS stimulation, 

whereas, the expression IL-1β in HeNC2 cells was obviously increased along with the LPS 

stimulating time. We also observed the differentially elevated STAT1 expression in both 

LPS stimulated cell lines as it is more obvious in HeNC2 cells as shown in Figure 5b. Our 

western blot results were consistent with the quantitative proteomic results obtained from 

our multiplex AACT/SILAC quantitative approach.

4 Discussion

4.1. Multiplex AACT/SILAC-based quantitative analysis

In the past two years, AACT (synonym- SILAC) has been widely used in quantitative 

proteomics and proven to be an efficient and precise method. In most of the quantitative 

proteomic studies, only two states of cell/tissue populations could be characterized. 

Recently, the emerging iTRAQ technology provided the possibility to quantify up to 4 

different cell populations.[14, 15] Further, triple amino acid-specific metabolic labeling to 

study temporal phosphotyrosine signaling[20] and universal 15N/13C triple labeling were 

applied in quantitative proteomics and peptide de novo sequencing[19].

In this work, we applied multiplex AACT to study the TLR4-dependent and –independent 

proteomic changes in macrophages upon LPS stimulation. The labeling efficiency and 

specificity of AACT with different isotopically enriched lysine reached more than 95% (as 

shown in Figure 2), therefore, the unlabeled portion in the labeled samples causes little 

interference in quantitation. Multiplex labeling enables the simultaneous comparison of 3 

different cell populations in a single experiment, thus greatly improves the accuracy, 

efficiency, and throughput in quantitative proteomics as multiplex labeling avoids the 

possible variations involved in multiple experiments. However, the increased number of 

labeling precursors also increases the complexity of the mass spectra. We observed many 

labeled peptides overlapped with other different peptides in the spectra (data not shown), 
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especially when analyzed large gel bands. The overlapped isobaric peptides may cause large 

errors in automatic quantification using MSQuant or other similar programs. In manual 

quantification, the error caused by overlapped isobaric peptides can be reduced by manually 

subtracting the spectral background. In addition, when the overlapped peptides co-eluted, it 

becomes impossible to subtract all the background. Therefore, the quantification results 

obtained from co-eluted isobaric peptides were not included in this report. Compared to the 

standard deviations (S.D.s) of manual quantification, the S.D.s of quantification results 

obtained from automated software, MSQuant, is relatively significant. The possible reason is 

that the deuterium-labeled lysine creates minor chromatographic shift on reverse phase LC 

separation, and the computer software cannot take this factor into calculation. However, the 

manual quantification can subtract background and reduce the error caused by the 

chromatographic shift, therefore, provides more accurate quantification results.

We chose to use strict trypsin specificity in protein identification by MS/MS searching using 

MASCOT. Some previous studies showed that proteins in a complex protein mixture were 

often cleaved at non-specific site,[23] therefore, some researchers suggested using non-

enzyme specificity during database search to improve sensitivity. [24] Recent studies also 

suggested trypsin cleaves proteins exclusively at C-terminal of arginine and lysine.[25] We 

found that by using strict trypsin specificity in database search could significantly reduce the 

searching time (from more than 10 hours to several minutes for each search). More 

interestingly, we found that using strict trypsin specificity can actually identify more 

proteins than using non-tryptic specificity (data not shown). The sensitivity of protein 

identification by database search is not improved by using non-tryptic specificity. Without 

the support of a high computer power, it is impractical to perform database search without 

enzyme specificity. By using strict trypsin specificity in database search, it ensured the 

database searching results would have less false-positive rate. Therefore, it requires less 

manual intervention in the result revalidation.

Manual inspection of the automatic protein database search results is an effective way to 

remove false-positives in protein identification,[26] although it is not as fast as using 

computational approaches. Combining decoyed database (i.e., sequence reversed database) 

search and manual inspection, it can greatly reduce the false-positive rate in protein 

identification by database search.

Some researchers had found that semi-essential amino acid arginine could be converted to 

proline partly through the urea metabolic pathway. Thus, the 13C on the backbone of 

arginine could be incorporated into proline, and some proline containing peptides will then 

show the part of specific isotopic pattern (5 Da split).[27] In this work, we did not find 

isotope scrambling caused by lysine-specific mass tagging.

4.2. Biological implication of our proteomic dataset

Previously TLR4 has been established as the LPS receptor by genetic approaches. However, 

several reports indicated that not all cellular responses toward LPS stimulation are via 

TLR4.[1] In the present study we applied a multiplex labeling AACT/SILAC to distinguish 

those proteins whose expression changes depend on TLR4 pathway from those that are not 

TLR4-dependent. Specifically, both HeNC2 and GG2EE are macrophage cell lines derived 
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from congenic mice strains, C3H/HeN and C3H/HeJ. These two strains are genetically 

identical except that C3H/HeJ harbors a single point mutation on its TLR4 intracellular 

domain that abolishes TLR4-mediated response [28]. As indicated in Table 1, 20 proteins 

were significantly up-regulated in HeNC2 cells, of which only 5 were induced in GG2EE 

cells. Interleukine 1 (IL-1) is the well-known proinflammatory cytokine that is induced in 

macrophage by LPS through TLR4 pathway. IL-1 receptor antagonist, etc, is also reported 

as LPS-inducible genes elsewhere.[29] The requirement of TLR4 for the induction of these 

genes was validated by western blot as in Figure 5. We also identified cytokines such as 

TNF-α associate protein 1 (TRAP 1) and IFN-α response protein (IFNG15) in the study, but 

did not detect their lysine-containing peptides for the quantification purpose (Suppl. Figure 

1). If we increase the sample amount or using alternative amino acid precursors for labeling, 

it is likely to quantify these proteins too. Nevertheless, using a systems investigation, our 

results support the previous notion that not all LPS-inducible protein expression is 

dependent on TLR4. One example of these proteins is called BCR downstream signaling 1 

(or Signal-transducing adaptor protein 1, STAP-1) that contains a SH2 domain that normally 

functions as an adaptor for tyrosine kinase pathways.[30] Its close homologue STAP-2 was 

shown to mediate the IL-6 induced STAT3 activation.[30] One may speculate that STAP-1 

may function as an adaptor to mediate some of the LPS-mediated cellular responses.

Previously Hirotani et.al. performed a comprehensive microarray analysis of LPS-inducible 

genes in mouse macrophages from wild-type, MyD88−/−, TRIF−/−, and MyD88−/−TRIF−/− 

mice. 148 genes in wild-type macrophages were found to be induced in response to LPS.

[31] Compared to genomic approach, our proteomic approach did not detect as many 

changes at protein level, which is probably due to the higher complexity of proteome. 

However, proteomic approach can provide supplementary information to what genomic 

approach can do. From example, among these identified proteins, carbonic anhydrase 2 was 

induced to the most. Its induction is mainly TLR4-dependent although in GG2EE cells there 

was a three-fold induction upon LPS stimulation. Interestingly, in a report Carbonic 

Anhydrase 2 was indicated as transcriptionally uninduced by LPS.[32, 33] This serves as 

solid evidence why a proteome analysis is important for a full understanding of the cellular 

responses. In fact, carbonic anhydrase is important in inflammatory processes because it 

maintains the intracellular pH by controlling the concentration of pCO2. Furthermore, the 

ambient pCO2 modulates intracellular pH, oxidant generation and IL-8 secretion in human 

neutrophils.[32]

We also noticed that there are several down-regulated proteins in the study. Protein 

phosphatase 2A inhibitor-2 (PP2Ai-2) was specifically down-regulated in the TLR4 wild 

type cell but not in the TLR4-deficienct cell line. Protein phosphatase 2A (PP2A) has been 

shown to down-regulate mitogen-activated protein (MAP) kinase pathway by decreasing 

phosporylated MAP kinase[34]. Because PP2Ai-2 functions as an inhibitor of PP2A, we 

therefore suspect that TLR4 signaling activation suppresses PP2Ai-2 expression so that 

PP2A can deactivate the MAPK signaling events following TLR4 activation. This might 

serve as a negative regulatory mechanism to shut down the TLR4 signaling. On the other 

hand, proteins such as annexin A1 and A5 were equally down-regulated in both TLR4 WT 
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and deficient lines, suggesting that these proteins are probably involved in a more global 

response to a cellular stress exerted by LPS stimulation.

In summary, we have designed a multiplex AACT quantitative approach to comparatively 

study the TLR4-dependent and -independent cellular protein changes in macrophage upon 

LPS stimulation. Our study provided first proteomic view supporting the notion that not all 

LPS-inducible events are TLR4-dependent, which will shed light to our understanding of 

how immune cells respond to LPS challenge.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall Experimental Design. Cells are grown in D-MEM medium supplemented with either 

regular lysine, lysine-d4, and lysine-13C6
15N2 for 160hrs to allow complete mass-tagging of 

the corresponding proteome. The lysine-d4 and lysine-13C6
15N2 labeled macrophages were 

stimulated respectively by LPS for 20 hrs. Soluble protein from the three different cell 

populations are mixed equally and separated on 1D-SDS PAGE, followed by in-gel tryptic 

digestion and LC-MS analysis.
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Figure 2. 
High specificity and efficiency of multiplex amino acid coded mass-tagging. The mass 

spectra of cyclophilin A peptide from the cells grown in (a) regular, (b) lysine-d4 

supplemented, and (c) lysine-13C6
15N2 supplemented media showed the labeling specificity 

is more than 95%.

Gu et al. Page 14

Proteomics. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Expression of actin is not affected by LPS treatment. (a) Mass spectrum of actin peptide –

DLTDYLMK from equally mixed sample. (b) Western blot of actin in three different cell 

populations before the mix.
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Figure 4. 
Mass spectra of several peptides derived from (a) BCR downstream signaling, (b) aldose 

reductase, (c) interleukin 1β, and (d) STAT 1 were shown to represent the signal class from 

those up-regulated proteins. The mass spectra of the peptide derived from those up-regulated 

proteins show higher isotopic intensity of the lysine-d4 or lysine-13C6
15N2 labeled peptides.
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Figure 5. 
The time-course study of IL-1β and STAT1 expression at protein level after LPS 

stimulation. (a) TLR4-deficient macrophage cell line GG2EE. (b) TLR4 sufficient or wild-

type macrophage cell line HeNC2. Note that the expression level of beta-actin did not 

change during stimulation of both cell lines, whereas IL-1β was induced only in HeNC2 

cells. Upon stimulation, at protein level STAT1 was induced by 2 folds in HeNC2 cells and 

was less elevated in GG2EE cells.
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