36,376 research outputs found
The effect of internal pipe wall roughness on the accuracy of clamp-on ultrasonic flow meters
Clamp-on transit-time ultrasonic flowmeters (UFMs) suffer from poor accuracy compared with spool-piece UFMs due to uncertainties that result from the in-field installation process. One of the important sources of uncertainties is internal pipe wall roughness which affects the flow profile and also causes significant scattering of ultrasound. This paper purely focuses on the parametric study to quantify the uncertainties (related to internal pipe wall roughness) induced by scattering of ultrasound and it shows that these effects are large even without taking into account the associated flow disturbances. The flowmeter signals for a reference clamp-on flowmeter setup were simulated using 2-D finite element analysis including simplifying assumptions (to simulate the effect of flow) that were deemed appropriate. The validity of the simulations was indirectly verified by carrying out experiments with different separation distances between ultrasonic probes. The error predicted by the simulations and the experimentally observed errors were in good agreement. Then, this simulation method was applied on pipe walls with rough internal surfaces. For ultrasonic waves at 1 MHz, it was found that compared with smooth pipes, pipes with only a moderately rough internal surface (with 0.2-mm rms and 5-mm correlation length) can exhibit systematic errors of 2 in the flow velocity measurement. This demonstrates that pipe internal surface roughness is a very important factor that limits the accuracy of clamp on UFMs
Diesel engine fuel injection monitoring using acoustic measurements and independent component analysis
Air-borne acoustic based condition monitoring is a promising technique because of its intrusive nature and the rich information contained within the acoustic signals including all sources. However, the back ground noise contamination, interferences and the number of Internal Combustion Engine ICE vibro-acoustic sources preclude the extraction of condition information using this technique. Therefore, lower energy events; such as fuel injection, are buried within higher energy events and/or corrupted by background noise.
This work firstly investigates diesel engine air-borne acoustic signals characteristics and the benefits of joint time-frequency domain analysis. Secondly, the air-borne acoustic signals in the vicinity of injector head were recorded using three microphones around the fuel injector (120° apart from each other) and an Independent Component Analysis (ICA) based scheme was developed to decompose these acoustic signals. The fuel injection process characteristics were thus revealed in the time-frequency domain using Wigner-Ville distribution (WVD) technique. Consequently the energy levels around the injection process period between 11 and 5 degrees before the top dead center and of frequency band 9 to 15 kHz are calculated. The developed technique was validated by simulated signals and empirical measurements at different injection pressure levels from 250 to 210 bars in steps of 10 bars. The recovered energy levels in the tested conditions were found to be affected by the injector pressure settings
Stochastic stability of viscoelastic systems under Gaussian and Poisson white noise excitations
As the use of viscoelastic materials becomes increasingly popular, stability of viscoelastic structures under random loads becomes increasingly important. This paper aims at studying the asymptotic stability of viscoelastic systems under Gaussian and Poisson white noise excitations with Lyapunov functions. The viscoelastic force is approximated as equivalent stiffness and damping terms. A stochastic differential equation is set up to represent randomly excited viscoelastic systems, from which a Lyapunov function is determined by intuition. The time derivative of this Lyapunov function is then obtained by stochastic averaging. Approximate conditions are derived for asymptotic Lyapunov stability with probability one of the viscoelastic system. Validity and utility of this approach are illustrated by a Duffing-type oscillator possessing viscoelastic forces, and the influence of different parameters on the stability region is delineated
Fluctuations and scaling of inverse participation ratios in random binary resonant composites
We study the statistics of local field distribution solved by the
Green's-function formalism (GFF) [Y. Gu et al., Phys. Rev. B {\bf 59} 12847
(1999)] in the disordered binary resonant composites. For a percolating
network, the inverse participation ratios (IPR) with are illustrated, as
well as the typical local field distributions of localized and extended states.
Numerical calculations indicate that for a definite fraction the
distribution function of IPR has a scale invariant form. It is also shown
the scaling behavior of the ensemble averaged described by the
fractal dimension . To relate the eigenvectors correlations to resonance
level statistics, the axial symmetry between and the spectral
compressibility is obtained.Comment: 7 pages, 6 figures, accepted by Physical Review
Efficient electronic entanglement concentration assisted with single mobile electron
We present an efficient entanglement concentration protocol (ECP) for mobile
electrons with charge detection. This protocol is quite different from other
ECPs for one can obtain a maximally entangled pair from a pair of
less-entangled state and a single mobile electron with a certain probability.
With the help of charge detection, it can be repeated to reach a higher success
probability. It also does not need to know the coefficient of the original
less-entangled states. All these advantages may make this protocol useful in
current distributed quantum information processing.Comment: 6pages, 3figure
- …