82 research outputs found

    Palladium-catalyzed difluoromethylation of heteroaryl chlorides, bromides and iodides.

    Get PDF
    A palladium-catalyzed difluoromethylation of a series of heteroaryl chlorides, bromides and iodides under mild conditions is described. A wide range of heteroaryl halides such as pyridyl, pyrimidyl, pyrazyl, funanyl, thienyl, pyazolyl, imidazolyl, thiazolyl, and oxazolyl halides were efficiently difluoromethylated, thus providing medicinal chemists an alternative choice for the preparation of drug candidates with the difluoromethylated heteroarene unit

    Cyber-Resilience Enhancement and Protection for Uneconomic Power Dispatch under Cyber-Attacks

    Get PDF
    False data injection (FDI), could cause severe uneconomic system operation and even large blackout, which is further compounded by the increasingly integrated fluctuating renewable generation. As a commonly conducted type of FDI, load redistribution (LR) attack is judiciously manipulated by attackers to alter the load measurement on power buses and affect the normal operation of power systems. In particular, LR attacks have been proved to easily bypass the detection of state estimation. This paper presents a novel distributionally robust optimization (DRO) for operating transmission systems against cyber-attacks while considering the uncertainty of renewable generation. The FDI imposed by an adversary aims to maximally alter system parameters and mislead system operations while the proposed optimization method is used to reduce the risks caused by FDI. Unlike the worst-case-oriented robust optimization, DRO neglects the extremely low-probability case and thus weakens the conservatism, resulting in more economical operation schemes. To obtain computational tractability, a semidefinite programming problem is reformulated and a constraint generation algorithm is utilized to efficiently solve the original problem in a hierarchical master and sub-problem framework. The proposed method can produce more secure and economic operation for the system of rich renewable under LR attacks, reducing load shedding and operation cost to benefit end customers, network operators, and renewable generation

    Conformal Three-Dimensional Interphase of Li Metal Anode Revealed by Low Dose Cryo-Electron Microscopy

    Full text link
    Using cryogenic transmission electron microscopy, we revealed three dimensional (3D) structural details of the electrochemically plated lithium (Li) flakes and their solid electrolyte interphase (SEI), including the composite SEI skin-layer and SEI fossil pieces buried inside the Li matrix. As the SEI skin-layer is largely comprised of nanocrystalline LiF and Li2O in amorphous polymeric matrix, when complete Li stripping occurs, the compromised SEI three-dimensional framework buckles, forming nanoscale bends and wrinkles. We showed that the flexibility and resilience of the SEI skin-layer plays a vital role in preserving an intact SEI 3D framework after Li stripping. The intact SEI network enables the nucleation and growth of the newly plated Li inside the previously formed SEI network in the subsequent cycles, preventing additional large amount of SEI formation between newly plated Li metal and the electrolyte. In addition, cells cycled under the accurately controlled uniaxial pressure can further enhance the repeated utilization of the SEI framework and improve the coulombic efficiency (CE) by up to 97%, demonstrating an effective strategy of reducing the formation of additional SEI and inactive dead Li. The identification of such flexible and porous 3D SEI framework clarifies the working mechanism of SEI in lithium metal anode for batteries. The insights provided in this work will inspire researchers to design more functional artificial 3D SEI on other metal anodes to improve rechargeable metal battery with long cycle life

    The Altered Reconfiguration Pattern of Brain Modular Architecture Regulates Cognitive Function in Cerebral Small Vessel Disease

    Get PDF
    Background: Cerebral small vessel disease (SVD) is a common cause of cognitive dysfunction. However, little is known whether the altered reconfiguration pattern of brain modular architecture regulates cognitive dysfunction in SVD.Methods: We recruited 25 cases of SVD without cognitive impairment (SVD-NCI) and 24 cases of SVD with mild cognitive impairment (SVD-MCI). According to the Framingham Stroke Risk Profile, healthy controls (HC) were divided into 17 subjects (HC-low risk) and 19 subjects (HC-high risk). All individuals underwent resting-state functional magnetic resonance imaging and cognitive assessments. Graph-theoretical analysis was used to explore alterations in the modular organization of functional brain networks. Multiple regression and mediation analyses were performed to investigate the relationship between MRI markers, network metrics and cognitive performance.Results: We identified four modules corresponding to the default mode network (DMN), executive control network (ECN), sensorimotor network and visual network. With increasing vascular risk factors, the inter- and intranetwork compensation of the ECN and a relatively reserved DMN itself were observed in individuals at high risk for SVD. With declining cognitive ability, SVD-MCI showed a disrupted ECN intranetwork and increased DMN connection. Furthermore, the intermodule connectivity of the right inferior frontal gyrus of the ECN mediated the relationship between periventricular white matter hyperintensities and visuospatial processing in SVD-MCI.Conclusions: The reconfiguration pattern of the modular architecture within/between the DMN and ECN advances our understanding of the neural underpinning in response to vascular risk and SVD burden. These observations may provide novel insight into the underlying neural mechanism of SVD-related cognitive impairment and may serve as a potential non-invasive biomarker to predict and monitor disease progression

    Economic-effective multi-energy management with voltage regulation networked with energy hubs

    Get PDF
    This paper develops a novel two-stage coordinated volt-pressure optimization (VPO) for integrated energy systems (IES) networked with energy hubs considering renewable energy sources. The promising power-to-gas (P2G) facilities are used for improving the interdependency of the IES. The proposed VPO contains the traditional volt-VAR optimization functionality to mitigate the voltage deviation while ensuring a satisfying gas quality due to the hydrogen mixture. In addition to the conventional voltage regulating devices, i.e., on-load tap changers and capacitor banks, P2G converter and gas storage are used to address the voltage fluctuation problem caused by renewable penetration. Moreover, an effective two-stage distributionally robust optimization (DRO) based on Wassersteain metric is utilized to capture the renewable uncertainty with tractable robust counterpart reformulations. The Wasserstein-metric based ambiguity set enables to provide additional flexibility hedging against renewable uncertainty. Extensive case studies are conducted in a modified IEEE 33-bus system connected with a 20-node gas system. The proposed VPO problem enables to provide a voltage-regulated economic operation scheme with gas quality ensured that contributes high-quality but low-cost multi-energy supply to customers

    A New pseudo-Alkaloid Taxane and a New Rearranged Taxane from the Needles of Taxus canadensis

    Get PDF
    A new taxane with an amino side chain on C-5 and a new 11(15→1)abeotaxane having a tetrahydrofuran ring along carbon atoms C-2, C-3, C-4, C-20 identified for the first time from the needles of the Canadian yew, Taxus canadensis. Their structures were characterized as 2α,7β ,9α,10β ,13-pentaacetoxy-11β -hydroxy-5α-(2 -hydroxy,3 -N,N-dimethylamino-3 -phenyl)-propionyloxytaxa-4(20),12-diene (1) and 13α,20β -diacetoxy-5α,7β ,9α,10β -tetrahydroxy-2α,20-epoxy-11(15→1)abeotaxa-11,15-diene (2) on the basis of 1D, 2D NMR spectroscopy and high-resolution FABMS analysis. Taxane 1 contains a rare C-12, C-13 double bond and a basic side chain, while taxane 2 bears a rare isopropenyl group at C-1

    Half-Sphere Shell Supported Pt Catalyst for Electrochemical Methanol Oxidation

    Get PDF
    Bi-functional effect, elevated mass transport and increased durability have been combined within one catalyst for electrochemical methanol oxidation reaction. It has niobium (Nb) doped titanium dioxides (TiO2) nanosized half-sphere shell (HSS) as the substrate material deposited with small amount of Pt nanoparticles. These specially designed HSS nanostructure has significantly increased surface areas which are suitable for Pt nanoparticles to be deposited onto them to form the catalyst denoted as Pt/Nb-TiO2 HSS. It exhibits a remarkably high methanol oxidation activity of 0.21 V vs. RHE which is 0.05 V lower than HiSPEC10000 PtRu/C catalyst, due to the substrate's strong metal support interactions effect, bi-functional effect and the special structure. These HSS nanostructures have also increased the methanol diffusion and mass transport within the anode to give a maximum power output of 0.0931 W of cathode polarization in miniature direct methanol fuel cell (DMFC). It also acts as protection shells, which minimises the dissolution of Pt metal nanoparticles to prevent its diffusion through the membrane

    Four Eremophilane Sesquiterpenes from the Mangrove Endophytic Fungus Xylaria sp. BL321

    Get PDF
    Three new eremophilane sesquiterpenes (1–3) were isolated from the mangrove endophytic fungus Xylaria sp. BL321 together with 07H239-A (4), a known analogue of the new compounds. The structures of these compounds were elucidated by analysis of their MS, 1D and 2D NMR spectroscopic data. Compound 4 showed activation activity on α-glucosidase at 0.15 μM (146%), and then, 4 gradually produced inhibitory activity on α-glucosidase with increasing concentration, and the IC50 value is 6.54 μM
    • …
    corecore