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Abstract—False data injection (FDI), could cause severe 

uneconomic system operation and even large blackout, which is 

further compounded by the increasingly integrated fluctuating 

renewable generation. As a commonly conducted type of FDI, load 

redistribution (LR) attack is judiciously manipulated by attackers 

to alter the load measurement on power buses and affect the normal 

operation of power systems. In particular, LR attacks have been 

proved to easily bypass the detection of state estimation. This paper 

presents a novel distributionally robust optimization (DRO) for 

operating transmission systems against cyber-attacks while 

considering the uncertainty of renewable generation. The FDI 

imposed by an adversary aims to maximally alter system 

parameters and mislead system operations while the proposed 

optimization method is used to reduce the risks caused by FDI. 

Unlike the worst-case-oriented robust optimization, DRO neglects 

the extremely low-probability case and thus weakens the 

conservatism, resulting in more economical operation schemes. To 

obtain computational tractability, a semidefinite programming 

problem is reformulated and a constraint generation algorithm is 

utilized to efficiently solve the original problem in a hierarchical 

master and sub-problem framework. The proposed method can 

produce more secure and economic operation for the system of rich 

renewable under LR attacks, reducing load shedding and operation 

cost to benefit end customers, network operators, and renewable 

generation.    

 

Index Terms—Cyber-attacks, distributionally robust 

optimization, false data injections, load redistribution attacks, 

real-time economic dispatch, transmission network.  

 

I. INTRODUCTION 

DVANCEMENT of information and communication 

technology (ICT) has a significant impact on power 

systems by improving operation efficiency in an interactive and 

dynamic paradigm [1-4]. However, power systems with high 

integration of ICT, consisting of cyber infrastructures, are 

vulnerable to cyber-attacks [5]. Cyber-attacks may originate 

from anonymous attackers, causing low probability/high 

impact consequences on power systems, such as overloading, 

load shedding, and uneconomical operation. Attackers launch 

false data injections (FDI) that deceive the energy management 

with wrong data injection, thus causing system operators to 

execute wrong actions. In 2003, Davis-Besse nuclear power 

plant was hacked remotely in the U.S [6]. In 2015, the cyber-

attack on the Ukraine power grid has caused 225,000 customers 

to lose power [7]. A "denial-of-service" attack disabled a grid 

control system in Utah, U.S. in March 2019 [8]. Existing 

research of FDI attacks against power systems can be generally 

categorized into: i) launching valid FDI attacks with impact 

assessment model of attacks [9-11] and ii) designing defence 

strategies to protect the power system [9-11[12]].  

From attacker’s perspective, reference [9] proposes an attack 

model against AC state estimation. Rather than acquiring the 

complete information of entire power networks, it relaxes the 

requirement by only requiring network information of attack 

regions. Paper [10] reveals the potential link between FDI and 

contingency, and designs a bi-level model to mitigate maximum 

potential attacks. Cyber-attacks targeting at system topology 

including removal, addition and switching of lines are proposed 

in [11] to mislead decision making.  

On the other side, to defend and address the impact of cyber-

attacks against power systems, studies have been widely 

conducted using state estimation [13], game-theoretical 

frameworks [14] and filter based FDI detection algorithms [15]. 

Based on dynamic state estimation, a risk mitigation strategy is 

proposed to guarantee the elimination of threats from cyber-

attacks [13]. Reference [15] proposes an online algorithm for 

FDI considering adversary, which can design stealthy attacks 

by Kalman filter. The proposed quick and reliable detection 

mechanism offers effective detection with a recovery 

functionality to mitigate attacks. A stochastic game-theoretic 

method is used to generate optimal strategies for grid defender 

against cyber-physical attacks in [14].  

State estimation is a significant approach to filter and detect 

FDI in case that it misleads the operation and control of power 

systems by inferring with metered operational parameters [16-

18]. However, it is vulnerable to malicious attacks [9, 19], such 

as load redistribution (LR). As a type of FDI, LR is defined as 

the attack on load bus measurements through increasing load at 

some buses and decreasing load at other buses by adversary 

[20]. LR attacks consequently mislead system operators with 

wrong load data information and thus could cause wrong 

dispatch schemes if corrective actions are not implemented. 

According to [20, 21], from an adversary’s perspective, the 

goals of LR attacks can be categorized into immediate attacks 

and delayed attacks. Reference [9] proves that the residue of 

bad data detection can be avoided by a stealthy LR design, 
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which can evade detection. Therefore, adversaries can 

manipulate these masked and hidden attacks, consequently 

causing a series of disruptive impacts on power systems, e.g., 

equipment overheating and even cascading failures.  

In addition to physical disruptions, the disruptions of LR 

attacks on power system operation could cause huge economic 

loss as the system operator may deliver wrong dispatch 

schedules after attackers manipulate falsified measurement 

vectors. Under the masking and failed detection of LR, it is of 

high necessity to ensure the supply security and mitigate the 

uneconomic dispatch under potential LR attacks.  

Economic dispatch (ED) is one of the most significant 

decision-making problems in power system operation that 

could be affected by LR attacks. A corrective dispatch scheme 

is proposed for an ED problem considering LR attacks that can 

evade the detection [22], which aims at mitigating overloading 

under the worst-case attack scenarios. Reference [23] proposes 

a network-constrained unit commitment model against cyber-

attacks considering the worst-case LR attacks. Both papers use 

robust optimization (RO) based models [22, 23], which ensure 

the system security under the worst-case LR attacks. However, 

in practice, the worst-case scenario rarely happens and could 

lead to unnecessarily high operation cost.  

Thus, it is summarised that from the attacker’s perspective, 

LR is a malicious and stealthy designed attack to mislead 

system operators and cause uneconomic operation. From the 

system operators’ perspective, LR is a random, masked, and 

hard-detectable attack, which requires an effective mitigation 

scheme. Therefore, the random LR attacks can be modelled as 

uncertainty in ED from the operator’s perspective. 

 RO and stochastic optimization (SO) are the two major 

approaches to handle the uncertainties in ED problems [24-27]. 

RO includes uncertainties by predefined uncertainty sets 

considering the worst-case scenario. The uncertainty sets are 

easily constructed from empirical uncertainty regions. However, 

they neglect the distributional information of uncertainties, 

potentially leading to overly conservative results. SO hedges 

against uncertainties with specifically known probability 

distributions and thus provide relatively optimistic solutions. 

However, the estimation of probability distributions in SO is 

difficult and often requires a large number of data samples.  

Inheriting the advantages of SO and RO, distributionally 

robust optimization (DRO) weakens the assumption of using 

exact probability distributions of uncertain variables compared 

with SO. DRO also takes advantage of distributional 

information to and considers the worst distribution scenario 

while RO ignores construct the ambiguity sets the probability 

characteristics. In this way, DRO can generate less conservative 

results compared to RO and has been widely applied to power 

system operations [28-31]. A security-constrained ED is 

proposed by using DRO considering renewable generation 

uncertainties [32]. In summary, DRO has been used to model 

random renewable generation [32, 33], resilience , and 

resilience problems , proved to be effective and tractable. To 

the best knowledge of authors, DRO has not been applied to 

model and resolve LR attacks. 

One of the major resilience issues of the power system is the 

cybersecurity problem. Supervisory control and data 

acquisition (SCADA) is a software-enabled platform for 

monitoring and operating power systems. However, cyber-

attacks are threats to SCADA and this would eventually operate 

the power system incorrectly, thus causing resilience and 

security issues. Cyber-attacks are one of the major threats that 

affect the reliable and economic operation of power systems. 

Thus, it is critically significant to design a resilience 

enhancement of the unprotected system operation against 

cyber-attacks. Through considering possible cyber-attacks 

conducted in the real-time operation, the capacity reserve of 

generators are scheduled in the first stage. In addition, the 

second-stage enables to take adaptive recourse actions by 

redispatch and implement load shedding to counteract the 

cyber-attacks. In summary, the aforementioned measures can 

enhance the resilience of the system under exposure to cyber-

attacks. A more reliable operation scheme will be determined 

based on the proposed two-stage resilience enhancement. 

This paper addresses the uneconomic dispatch issue of power 

systems under cyber-attacks by using a novel data-driven robust 

optimization, i.e. DRO approach. A two-stage DRO is proposed 

for cyber-resilient ED problems in transmission networks 

against potential cyber-attacks (DR-CED) considering the 

uncertainties from inaccurate renewable generation forecasting. 

The first stage minimizes the day-ahead dispatch costs based on 

forecasted load and renewable generation. The second-stage 

takes recourse actions on real-time dispatch under LR attacks 

and meanwhile considers renewable uncertainties, which is 

then dualized. The overall problem is transformed into a semi-

definite programming formulation (SDP). Constraint 

generation algorithm (CGA) is utilized to solve the DR-CED 

under the two-stage framework. The case studies illustrate that 

the model can ensure the economical and secure performance 

of ED under cyber-attacks, providing transmission system 

operators (TSO) a powerful decision-making tool to conduct 

system operation.   

To sum up, the main contributions are summarized as follows:  

1) It develops a DRO method for protective measures of 

power systems under cyber-attacks, where DR-CED 

can address the uneconomic dispatch generated by 

traditional optimization approaches considering the 

risks of LR. 

2) Compared to the existing works which only models 

cyber-attacks but ignore renewable uncertainties, the 

proposed DR-CED can effectively incorporate 

renewable generation into the operation and their 

uncertainties.  

3) The proposed optimization only uses moment 

information of uncertainties, resolving the difficulty of 

collecting a large amount of data regarding the uncertain 

renewable generation and false data injections. 

4) Compared with day-ahead corrective actions handled 

by bi-level or tri-level optimization models, this paper 

formulates a novel two-stage cyber-secured 

optimization scheme, considering both day-ahead and 

real-time ED, which is more practical in reality.  

The rest of this paper is organized as follows. Section Ⅱ 

models LR attack. Section Ⅲ presents the objective function 
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and constraints of the proposed DR-CED. The methodology 

and mathematical reformulations are in section Ⅳ. Section Ⅴ 

demonstrates case studies and the performance of the DR-CED. 

Conclusions are given in section Ⅵ.  

II. MODELLING OF LOAD REDISTRIBUTION ATTACKS 

LR attacks are launched by false load data to affect system 

operation schedules. The tempered load meter reading deviates 

from the real reading and thus system operators make decisions 

based on the falsified load demand [18-21]. Consequently, this 

can cause economic loss and physical damages to the 

equipment. This section firstly proposes how attack 

manipulators can evade the detection by state estimation and 

then presents the modelling of LR attacks.  

A. State estimation  

State estimation is a powerful tool to detect FDI by 

processing raw data measurements, but a successful FDI can be 

undetectable by the adversary’s stealthy design [9, 34-36]. The 

nonlinear relationship between state variable 𝑥  and 

measurement 𝑧  is given in (1), where 𝐡(𝐱)  denotes the 

nonlinear vector function of 𝑥 and 𝑒 is the error measurement. 

Based on DC state estimation, equation (1) can be transformed 

into (2), where 𝐉 represents the Jacobian matrix.  

𝐳 = 𝐡(𝐱) + 𝐞  (1) 

𝐳 = 𝐉𝐱 + 𝐞  (2) 

After FDI realization, the measurement vector 𝐳  becomes 

𝐳𝐛𝐚𝐝 = 𝐳 + 𝐚, and the estimated state vector is represented as  

�̂�𝐛𝐚𝐝 = �̂� + 𝐜  where 𝐚  is attack vector and 𝐜  is the resulted 

deviation vector of state variable after FDI. Accordingly, to 

determine the estimated state variable, �̂�𝐛𝐚𝐝 can be formulated 

as: 

�̂�𝐛𝐚𝐝 = (𝐉′𝐖𝐉)−𝟏𝐉′𝐖𝐳𝐛𝐚𝐝  (3) 

Note that 𝐉′ represents the transpose of 𝐉 . The main bad data 

detection utilizes a normalized residual approach, utilizing the 

L2 norm ‖𝐳 − 𝐉�̂� ‖ to detect the bad data [37, 38]. If the residual 

is less than a threshold 𝜀, then the state estimate is valid without 

FDI.  

L2 norm of the measurement residual: ‖𝐳 − 𝐉�̂� ‖ ≤ 𝛆  (4) 

Then, equation (5) is given based on (3) and (4). Finally, 

equation (6) is obtained.  

‖𝐳 + 𝐚 − 𝐉((𝐉′𝐖𝐉)−𝟏𝐉′𝐖𝐳𝐛𝐚𝐝)‖  (5) 

‖𝐳 − 𝐉�̂� + (𝐚 − 𝐉𝐜)‖  (6) 

If 𝐚 is the linear combination of 𝐉 and 𝐜, i.e., 𝐚 = 𝐉𝐜, then 
‖𝐳 − 𝐉�̂�‖ has no change of residual. Therefore, a successful FDI 

attack is launched which can evade detection. Traditional bad 

data detection easily fails when the FDI vector 𝚫𝐳  is the 

multiplication of Jacobian matrix 𝐉 and amount of changes 𝚫𝐱 

[37]: 

𝚫𝐳 = 𝐚 = 𝐉𝐜 = 𝐉𝚫𝐱 (7) 

The bus power injection in (8) and power flow in (9) are: 

𝐁𝐏 = 𝐊𝐏 ∙ 𝐆 − 𝐊𝐃 ∙ 𝐃 (8) 

𝐏𝐋 = 𝐒𝐅 ∙ 𝐁𝐏 (9) 

The incremental matrice of 𝐁𝐏 and 𝐏𝐋 are in (10) and (11) 

respectively. 

𝚫𝐁𝐏 = 𝐊𝐏 ∙ 𝚫𝐆 − 𝐊𝐃 ∙ 𝚫𝐃 (10) 

𝚫𝐏𝐋 = 𝐒𝐅 ∙ 𝚫𝐁𝐏 (11) 

According to the assumptions of successful launch [20], LR 

attacks normally have the following characteristics.  

1. The output measurement of generators cannot be attacked 

since the attacks can be detected easily. Thus, 𝚫𝐆 = 0. 

2. Buses to be attacked have either load or generators, i.e., 

zero injection buses cannot be attacked. 

3. Load measurements are attackable. 

4. Branch flow measurement is attackable since it is 

influenced by the attacked load.  

Therefore, (10) and (11) can be recast as (12) based on the 

above assumptions. 

𝚫𝐏𝐋 = −𝐒𝐅 ∙ 𝐊𝐃 ∙ 𝚫𝐃 (12) 

∑Δ𝐷𝑘
 

= 0 
(13) 

−𝛾𝐷𝑘 ≤ Δ𝐷𝑘 ≤ 𝛾𝐷𝑘 (14) 

To evade the detection by state estimation, in attacks, some 

loads are manipulated to be increasing and some are decreasing, 

ensuring the total load to be unchanged, shown in (13). 

Constraint (14) ensures Δ𝐷𝑘  is within the upper and lower 

limits defined by the maximum percentage 𝛾 of attack 

magnitude.  

The initial branch flow is constrained by (15). Since the flow 

is corrupted by 𝚫𝐃  in (12), the deviation 𝚫𝐏𝐋  should be 

eliminated and the actual flow after LR attacks is constrained 

by (16), which could cause overloading with the addition of 
|𝐒𝐅 ∙ 𝐊𝐃 ∙ 𝚫𝐃|.  

𝐏𝐋 ≤ 𝐏𝐋 ≤ 𝐏𝐋 (15) 

𝐏𝐋 + 𝐒𝐅 ∙ 𝐊𝐃 ∙ 𝚫𝐃 ≤ 𝐏𝐋 ≤ 𝐏𝐋 + 𝐒𝐅 ∙ 𝐊𝐃 ∙ 𝚫𝐃 (16) 

It should be noted that this paper considers affected flow and 

conducts load shedding when overloading occurs.  

III. TWO-STAGE MITIGATION FOR UNECONOMIC DISPATCH 

The proposed two-stage DR-CED consists of: i) initial day-

ahead dispatch in the first stage and ii) real-time recourse 

dispatch after renewable uncertainty is revealed and LR attacks 

are launched in the second stage. The objective functions for 

the two stages are introduced respectively, followed by the 

constraints of day-ahead and real-time ED. Each equation in the 

mitigation scheme modelling hereafter, i.e., equations (17)-

(34), represents a set of constraints. For instance, equation (19) 

denotes the constraints at time slot t for renewable generator w.  

A. DR-CED Objective Function 

In (17), the first-stage objective includes minimizing 

generation costs and spinning reserve costs. The generation cost 

function is quadratic with coefficients 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 . The up and 

down spinning reserves are separately considered with different 

cost coefficients 𝜆+ and 𝜆−. Quadratic generation costs in (17) 

can be approximated by piecewise-linear functions. 

𝛤1 = min ∑ 𝑎𝑖
𝑖∈𝐼,𝑡∈𝑇

𝑃𝑖
𝑠(𝑡)2 + 𝑏𝑖𝑃𝑖

𝑠(𝑡) + 𝑐𝑖

+ 𝜆+𝑟𝑒𝑠𝑖
+(𝑡) + 𝜆−𝑟𝑒𝑠𝑖

−(𝑡) 

 

(17) 

The second-stage optimization objective is to minimize the 

regulation costs from recourse actions, given in (18). The three 

terms from left to right represent i) regulated renewable power 

generation cost ii) regulated generation cost and iii) load 

shedding cost, respectively. It is to be noted that ‘|𝜔𝑤
𝑠 (𝑡) −

𝜔𝑤
𝑟𝑒(𝑡)|’ and ‘|𝑃𝑖

𝑠(𝑡) − 𝑃𝑖
𝑟𝑒(𝑡)|’ are linearized via auxiliary 
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variables. For instance, ‘|𝑃𝑖
𝑠(𝑡) − 𝑃𝑖

𝑟𝑒(𝑡)|’ can be represented 

by (𝑃𝑖
𝑠(𝑡) − 𝑃𝑖

𝑟𝑒(𝑡)−) and (𝑃𝑖
𝑟𝑒(𝑡)+ − 𝑃𝑖

𝑠(𝑡)).  

𝛤2 = min ∑ 𝜆𝑗
𝑟𝑒|𝜔𝑤

𝑠 (𝑡) − 𝜔𝑤
𝑟𝑒(𝑡)|

𝑖∈𝐼,𝑡∈𝑇

+ 𝜆𝑖
𝑟𝑒|𝑃𝑖

𝑠(𝑡) − 𝑃𝑖
𝑟𝑒(𝑡)| + 𝜆𝑘

𝑙𝑠𝑃𝑘
𝑙𝑠(𝑡) 

 

(18) 

B. Day-ahead ED 

The first-stage DR-CED conducts day-ahead operation based 

on forecasted renewable generation and demand. Because the 

day-ahead ED is the preparation prior to real-time dispatch, this 

plan does not consider LR risks. The renewable output is 

constrained within the forecastings in (19). Constraints (20) and 

(21) ensure that the up and down spinning reserve capacities do 

not exceed the predefined limits. Constraints (22) and (23) 

ensure generation spinning reserve is within capacity. Branch 

power flow is constrained in (24) and (25), between initial and 

terminal nodes, where DC flow is adopted. It should be noted 

that the range of the phase angle (𝜃) is between -π and π. The 

power balance at each node is in (26). It is to be noted that 

𝑃𝐿𝑙
𝑠,𝑖𝑛𝑖(𝑡) and 𝑃𝐿𝑙

𝑠,𝑡𝑒𝑟(𝑡) represent the power flow injected and 

flowing out at the bus.  

0 ≤ 𝜔𝑤
𝑠 (𝑡) ≤ 𝜔𝑤

𝑓 (𝑡) (19) 

0 ≤ 𝑟𝑒𝑠𝑖
+(𝑡) ≤ 𝑅𝑒𝑠𝑖

+ (20) 

0 ≤ 𝑟𝑒𝑠𝑖
−(𝑡) ≤ 𝑅𝑒𝑠𝑖

− (21) 

𝑃𝑖
𝑠(𝑡) + 𝑟𝑒𝑠𝑖

+(𝑡) ≤ 𝑃𝑖,𝑚𝑎𝑥  (22) 

𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖
𝑠(𝑡) − 𝑟𝑒𝑠𝑖

−(𝑡) (23) 

𝑥𝑙𝑃𝐿𝑙
𝑠(𝑡) = (𝜃𝑙

𝑠,𝑖𝑛𝑖(𝑡) − 𝜃𝑙
𝑠,𝑡𝑒𝑟(𝑡)) (24) 

−𝑃𝐿𝑙,𝑚𝑎𝑥 ≤ 𝑃𝐿𝑙
𝑠(𝑡) ≤ 𝑃𝐿𝑙,𝑚𝑎𝑥  (25) 

∑𝑃𝑖
𝑠(𝑡) +

𝑖∈𝐼

∑ 𝜔𝑤
𝑠 (𝑡) +∑𝑃𝐿𝑙

𝑠,𝑖𝑛𝑖(𝑡) −∑𝑃𝐿𝑙
𝑠,𝑡𝑒𝑟(𝑡)

𝑙∈𝐿𝑙∈𝐿𝑤∈𝑊

=∑𝑃𝑘(𝑡)

𝑘∈𝐾

 

 

(26) 

C. Real-time ED 

The second-stage DR-CED determines the corrective 

dispatch plan after LR attacks and the realization of renewable 

output uncertainties.  In (27), the regulated renewable output is 

constrained within the new availability, considering the 

uncertainties of renewable forecasting errors. The regulated 

generator output is constrained with the spinning reserve in 

(28). Constraints (29) and (30) model the LR launched by 

attackers, which is the explicit expressions of (13) and (14). 

Load shedding is constrained in (31). Constraints (32) and (33) 

ensure no overloading along branches. The real-time power 

balance at each node is in (34). 

0 ≤ 𝜔𝑤
𝑟𝑒(𝑡) ≤ 𝜔𝑤

𝑓
(𝑡) + 𝜉𝑟(𝑡) (27) 

𝑃𝑖
𝑠(𝑡) − 𝑟𝑒𝑠𝑖

−(𝑡) ≤ 𝑃𝑖
𝑟𝑒(𝑡) ≤ 𝑃𝑖

𝑠(𝑡) + 𝑟𝑒𝑠𝑖
+(𝑡) (28) 

∑Δ𝑃𝑘(𝑡)

𝑘∈𝐾

= 0 
(29) 

−𝛾𝑃𝑘(𝑡) ≤ Δ𝑃𝑘(𝑡) ≤ 𝛾𝑃𝑘(𝑡) (30) 

0 ≤ 𝑃𝑘
𝑙𝑠(𝑡) ≤ 𝑃𝑘,𝑚𝑎𝑥

𝑙𝑠 (𝑡) (31) 

𝑥𝑙𝑃𝐿𝑙
𝑟𝑒(𝑡) = (𝜃𝑙

𝑟𝑒,𝑖𝑛𝑖(𝑡) − 𝜃𝑙
𝑟𝑒,𝑡𝑒𝑟(𝑡)) (32) 

−𝑃𝐿𝑙,𝑚𝑎𝑥 ≤ 𝑃𝐿𝑙
𝑟𝑒(𝑡) ≤ 𝑃𝐿𝑙,𝑚𝑎𝑥  (33) 

∑𝑃𝑖
𝑟𝑒(𝑡) +

 

𝑖∈𝐼

∑ 𝜔𝑤
𝑟𝑒(𝑡)

 

𝑤∈𝑊

+∑𝑃𝐿𝑙
𝑟𝑒,𝑖𝑛𝑖(𝑡) −∑𝑃𝐿𝑙

𝑟𝑒,𝑡𝑒𝑟(𝑡)

𝑙∈𝐿𝑙∈𝐿

=∑𝑃𝑘(𝑡) + Δ𝑃𝑘(𝑡) − 𝑃𝑘
𝑙𝑠(𝑡)

 

𝑘∈𝐾

 

 

(34) 

IV. METHODOLOGY 

      The methodology for solving the DR-CED is introduced in 

this section. Firstly, the abstract form of matrices and vectors 

are presented to represent the objective function and 

constraints. Then, ambiguity sets to accommodate random LR 

attacks and renewable uncertainties are proposed. Finally, the 

proposed DR-CED is transformed into a dual formulation and 

CGA is utilized to solve it.  

A. Abstract Formulation 

For simplicity, the compact form of the overall objective 

function combining (17) and (18) is as follows: 

min
𝐱∈𝑋

𝐜′𝐱 + sup
𝑃𝑟∈𝐷 

𝐸𝑃[𝑄(𝐱, 𝛏)] (35) 

                        s.t. 𝐀𝐱 ≤ 𝐛,  (36) 

   Where 

𝑄(𝐱, 𝛏) = min
𝐲
𝑓′𝐲 (37) 

                        s.t. 𝐄𝐱 + 𝐅𝐲 + 𝐆𝛏 ≤ 𝐡,  (38) 

Where, (36) and (38) represent constraints in the first and 

second stages, vector f corresponds to the coefficients of (18) 

and y represents the second-stage decision variables.  

B. Ambiguity Sets of DRO 

Similar to the uncertainty set for RO, the ambiguity set for 

DRO is to handle uncertain variables. Because LR attacks are 

of low probability and high impact, it is not practical to obtain 

sufficient information from historic data. Moment information 

including mean and covariance is used to construct the 

ambiguity set in (39). Similarly, (40) models the ambiguity set 

for renewable forecasting uncertainties.  

𝐷𝑘  =

{
 
 

 
 

𝑓(Δ𝐏𝐤)|

|

 
P{Δ𝐏𝐤} = 1

E{Δ𝐏𝐤} = 𝛍𝐤
−𝛾𝐏𝐤 ≤ Δ𝐏𝐤 ≤ 𝛾𝐏𝐤

E{Δ𝐏𝐤(Δ𝐏𝐤)
′} = 𝚺𝐤 + 𝛍𝐤(𝛍𝐤)

′

 }
 
 

 
 

 

 

 

(39) 

 

 

𝐷𝑟  =

{
 

 

𝑓(𝛏𝐫)||

 
P{𝛏𝐫} = 1

E{𝛏𝐫} = 𝛍𝐫
E{𝛏𝐫(𝛏𝐫)

′} = 𝚺𝐫 + 𝛍𝐫(𝛍𝐫)
′

 }
 

 

 

 

 

(40) 

 

 

 Where, (39) and (40) illustrate the integral of probability 

distribution Δ𝐏𝐤 or 𝛏𝐫 is 1.  

All possible distributions of 𝑓(Δ𝐏𝐤)  have the same mean 

vector and covariance matrix. All possible distributions of 

𝑓(𝛏𝐫) have the same mean vector and covariance matrix. 

C. Second-stage Dual Formulation  

For tractability, the ‘sup min’ framework of the second-stage 

problem needs to be reformulated into the dualized form with 
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only ‘min’. It can be reformed explicitly as (41), where S(x) is 

the objective function of the second-stage problem, 

sup
𝑃∈𝐷  

𝐸𝑃[𝑄(𝐱, 𝛏)] . The dual variables 𝛙𝟎 , 𝛙𝐣  and 𝛹𝑗𝑘  are 

associated with constraints (27) to (34). It is noted that 𝜉 

represents both Δ𝐏𝐤 and 𝛏𝐫 in this section for simplicity. 𝑃𝑟(𝛏) 
is the probability density function.  

𝑆(𝐱)𝑝𝑟𝑖𝑚𝑎𝑙 = max
𝑃𝑟(𝜉)∈𝐷 

 
∫𝑄(𝐱, 𝛏)
 

𝛯

𝑃𝑟(𝛏)𝑑𝛏 (41) 

s.t. 𝑃𝑟(𝛏) ≥ 0, ∀𝛏 ∈ 𝛯 (42) 

∫𝑃𝑟(𝛏)𝑑𝛏 = 1
 

𝛯

 (43) 

∫𝛏 
𝐦𝑃𝑟(𝛏)𝑑𝛏 = 𝛍𝐦

 

𝛯

 

m=1,2, …, 𝛯 

(44) 

∫𝛏 
𝐦𝛏 

𝐧𝑃𝑟(𝛏)𝑑𝛏 = 𝚺𝐦𝐧 + 𝛍𝐦𝛍𝐧

 

𝛯

 

m, n=1,2, …, 𝛯 

(45) 

In (41), the probability densities are decision variables to be 

optimized. The number of constraints is finite but the number 

of variables is infinite. The dual formulation is used to ensure 

tractability, which transforms the infinite-dimensional linear 

primal form (41)-(45) to the dual form (46) and (47) based on 

dual theory [39]. When the covariance matrix is strictly positive 

[40], strong duality holds and the results of (46) are equal to 

those of (41). Thus, the primal problem with an infinite number 

of variables and a finite number of constraints is transformed 

into the dual form, i.e., a semi-infinite program with a finite 

number of variables and an infinite number of constraints. 

Therefore, the problem (46) is easier to solve. With associated 

dual variables, i.e., 𝛙𝟎, 𝛙𝐣 and 𝛹𝑗𝑘 , equation (41) in the ‘max’ 

problem can be dualized to ‘min’ problem and thus can be 

integrated with the first-stage objective.  

Preposition: Equation (46) is the dual form of the primal 

form in (41) based on the dual theory [39], which proves that 

with strong duality, the results of (46) are equal to those of (41) 

when the covariance matrix is strictly positive, i.e., 𝑆(𝐱)𝑑𝑢𝑎𝑙 =
𝑆(𝐱)𝑝𝑟𝑖𝑚𝑎𝑙 . 

𝑆(𝐱)𝑑𝑢𝑎𝑙 = min
𝛹,𝜓,𝜓0

〈𝚿′𝚯〉 + 𝛙′ 𝛍 + 𝛙𝟎 (46) 

s.t. (𝛏)′𝚿𝛏 + 𝛙′𝛏 + 𝛙𝟎 ≥ 𝑄(𝐱, 𝛏) 

∀𝛏 ∈ 𝛯 
(47) 

Where 〈𝐀〉 is the trace of matrix A, and 𝚯  represents  𝚺 +
𝛍 (𝛍)

′.  

The new compact form of the DR-CED is  

min
𝑥∈𝑋

𝐜′𝐱 + 𝑆(𝐱)𝑑𝑢𝑎𝑙 (48) 

D. SDP Reformulation 

The two challenges that prevent the DR-CED from being 

solved directly are: 

i) problem (46) is not in a closed-form; 

ii) the dual form (46) contains an infinite number of 

constraints [41], which is a semi-infinite problem. 

A new dual reformulation is made and given in (49) and (50) 

with the new dual variable 𝜏 . And the positive quadratic 

function is obtained as the new representation of (37), where 

𝑉𝑆 is the polyhedral set of extreme points [41].  

max
𝑢∈𝑉𝑆

𝛕′(𝐛 − 𝐄𝐱 − 𝐆𝛏 
 ) (49) 

𝑉𝑆 = {𝛕|𝐅′𝛕 = 𝐟, 𝛕 ≤ 0} (50) 

Equation (47) can be expressed as (51) based on the new dual 

variable 𝜏, which is a positive quadratic function of  𝜉. 𝑁𝑣 is the 

vertices set of feasible region in 𝑉𝑆. 

(𝛏)′𝚿𝛏 + (𝛙 + 𝐆′𝛕𝐢)′𝛏 +𝛙𝟎 − (𝐡 − 𝐄𝐱)𝛕
𝐢 ≥ 0 

∀𝛏 ∈ 𝛯, i =1,2, …, 𝑁𝑣 
(51) 

which can be rewritten in the following compact matrix form: 

[
𝛏
1
]
′

[
𝚿

1

2
(𝛙 + 𝐆′𝛕𝐢)

1

2
 (𝛙 + 𝐆′𝛕𝐢)′ 𝛙𝟎 − (𝐡 − 𝐄𝐱)

′𝛕𝐢
] [
𝜉
1
] ⪰ 0 

∀𝛏 ∈ 𝛯, i =1,2, …, 𝑁𝑣 

(52) 

The final SDP formulation of DR-CED is built as follows:  

min
𝑥,𝛹,𝜓,𝜓0

𝐜′𝐱 + 〈𝚿′𝚯〉 + 𝛙′𝛍 + 𝛙𝟎 (53) 

s.t.  [
𝚿

1

2
(𝛙 + 𝐆′𝛕𝐢)

1

2
 (𝛙 + 𝐆′𝛕𝐢)′ 𝛙𝟎 − (𝐡 − 𝐄𝐱)

′𝛕𝐢
] ⪰ 0 

i =1,2, …, 𝑁𝑣, 𝑥 ∈ 𝑋 

(54) 

E. Constraint Generation Algorithm 

It is not practical to directly solve the SDP problem (53) 

because there are a large number of constraints in (54) with an 

extremely large cardinality of 𝑉𝑆. The most practical approach 

is to firstly enumerate a subset of vertices under the relaxation 

of SDP problem and then incorporate more vertices iteratively 

until the optimal solution is obtained. CGA separates the 

original problem into master and sub problems and solves them 

iteratively.  

The master and sub problems are illustrated in (55) and (56): 

min
𝑥,𝛹,𝜓,𝜓0

𝐜′𝐱 + 〈𝚿′𝚯〉 + 𝛙′𝛍 + 𝛙𝟎 (55) 

         
Fig. 1.  Flowchart of the constrained generation algorithm   
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s.t.  [
𝚿

1

2
(𝛙 + 𝐆′𝛕𝐢)

1

2
 (𝛙 + 𝐆′𝛕𝐢)′ 𝛙𝟎 − (𝐡 − 𝐄𝐱)

′𝛕𝐢
] ⪰ 0 

∀𝜏𝑖 ∈ 𝑉𝑆, 𝐱 ∈ 𝑋 

min
𝑥,𝛹,𝜓,𝜓0

(𝛏 
 )′𝚿𝛏 

 +𝛙′𝛏 
  +𝛙𝟎 − (𝐡 − 𝐄𝐱 − 𝐆𝛏 

 )′𝛕       (56)       

s.t. ∀𝛏 ∈ 𝛯, 𝜏 ∈ 𝑉𝑆 

It should be noted that subproblem (56) is a biconvex 

program, which can be solved by an alternative direction oracle 

via separately solving linear programming and convex 

quadratic programming with 𝜏 and 𝜉 
 fixed in each iteration.  

The initial set for all the vertices is set in the first step. Then 

the master and sub problems are solved in turn. At each 

iteration, the optimal objective value is checked if it is above 0. 

If it is not, the set of vertices is updated to incorporate more 

vertices. When the terminal condition is satisfied, record the 

optimal value and optimal solution. Then the second-stage 

problem can be solved based on an expected manner. The 

detailed steps of the proposed CGA are given in Fig. 1.  

V. CASE STUDIES 

This section presents the extensive case studies of the 

proposed DR-CED on a modified IEEE 30-bus system. All 

numerical simulations are obtained by MOSEK version 9.0 

with Intel Core i7-7700 CPU and 16GB RAM. To investigate 

the impact of LR attacks and renewable uncertainties on the ED 

problem, 8 cases are studied: 

Case 1: Single-stage ED without considering LR attacks or 

renewable uncertainty. 

Case 2: Single-stage robust ED considering LR attacks (γ=5%). 

Case 3: Case 2 considering renewable uncertainty (γ=5%). 

Case 4: Two-stage DR-CED considering only LR attacks 

(γ=5%).  

Case 5: Case 4 considering renewable uncertainty (γ=5%).  

Case 6-8: Case 5 with γ=10%, 15% and 20%.  

The test system is assumed to be fully measured, which 

means 21 load meters are required for the modified IEEE-30 

bus system. The 𝛾 for each bus is limited at ±25% of the actual 

load. The attacker aims to launch LR attacks without being 

detected by system estimators as discussed aforementioned. 

The attacker is assumed to have full knowledge about system 

topology and parameters, and the attacker has the ability to 

conduct LR attack on any buses. 

The modified IEEE 30-bus system is given in Fig. 2, which 

has 6 generators connected to buses 1, 2, 5, 8, 11 and 13. Two 

renewable generators are connected to buses 22 and 25. The 

renewable generation forecast is assumed to be 50 MW for bus 

22 and 60 MW for bus 25. TABLE Ⅰ shows the parameters of 

the penalty cost coefficients and renewable forecast. TABLE Ⅱ 

presents the parameters and constraints of generators.  

In (39) and (40), the ambiguity sets for uncertain LR attacks 

and renewable generation error are presented. The mean vector 

of Δ𝑃𝑘  and 𝜉𝑟  are represented by 𝜇𝑘  and 𝜇𝑟 , which are zero 

vectors in 24 dimensions, representing the LR attack and 

renewable generation error have both positive and negative 

values. The covariance matrices of Δ𝑃𝑘 and 𝜉𝑟  are denoted by 

Σ𝑘 and Σ𝑟 , which are 24x24 matrice. The covariance matrix of 

LR attack from the 20th to 22nd hours are shown in (57). And 

the covariance matrix of renewable generation error from the 

20th to 22nd hours are shown in (58). 

Σ𝑘,20−23 = [
0.125 0.75 −1
0.75 4.5 −6
−1 −6 8

] (57) 

Σ𝑟,20−23 = [
0 0 0
0 0.125 0.95
0 0.95 7.22

] 
(58) 

A. Computational Performance 

The combined convex quadratic programming and linear 

programming oracle discussed in section Ⅳ are difficult to 

solve, which is chosen to test the computational performance 

for case 4-6 and shown in Fig. 3. In general, case 4 has better 

computational performance, whose optimality gap to 1E+02 at 

the 5th iteration while those for cases 5 and 6 are at the 6th and 

7th. Case 4 has the quickest convergence speed, which 

converges at the13th iteration while cases 5 and 6 converge at 

the 15th iteration. The reason is that case 4 only considers LR 

attacks while cases 5 and 6 consider both LR attacks and 

renewable uncertainties, which cause more vertices and cuts 

generated in CGA.  

The second-stage expected performance is conducted based 

on 1000 simulated uncertainty realizations which share the 

same mean and covariance information. The sample size is 

 
Fig. 2.  Modified IEEE 30 bus system.  

TABLE Ⅰ 

TECHNICAL PARAMETERS 

𝜆𝑗
𝑟𝑒 𝜆𝑖

𝑟𝑒 𝜆𝑘
𝑙𝑠 𝜔22

𝑓
(𝑡) 𝜔25

𝑓
(𝑡) 

$100 $150 $600 50MW 60MW 

 
. TABLE Ⅱ 

GENERATOR PARAMETERS 

Bus 
No. 

𝑃𝑖,𝑚𝑖𝑛 

(MW) 

𝑃𝑖,𝑚𝑎𝑥 

(MW) 

𝑅𝑖
+, 𝑅𝑖

− 

(MW) 
𝑎𝑖 𝑏𝑖 𝑐𝑖 

 

1 50 200 20 0.004 2 6 

2 20 80 16 0.002 2 6 

5 15 50 10 0.006 1 8 

8 10 35 7 0.008 3 10 

11 10 30 10 0.025 3 18 

13 12 40 16 0.025 3 18 
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Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 23,2020 at 00:20:48 UTC from IEEE Xplore.  Restrictions apply. 



0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.3038065, IEEE
Transactions on Power Delivery

IEEE TRANSACTIONS ON POWER DELIVERY 

 
7 

changed to investigate its impact on second-stage operation 

cost. In Fig. 4, the result of case 4 fluctuates when the sample 

is fewer than 1000 and converges toward $73400 afterward. 

B. Economic Performance  

The first case investigates the impact of LR attacks and 

renewable uncertainties on the economic performance of the 

system operation. TABLE Ⅲ presents the economic 

performance under cases 1-5. Case 1 has the lowest total cost, 

i.e., $20087, without considering LR attacks and renewable 

uncertainties. When the 𝛾 is 5%, the highest total cost ($99699) 

is in case 3 among cases 2-5 since RO is applied and consider 

the worst-case for both LR attacks and renewable uncertainties. 

Case 2 yields a lower cost than case 3 but a higher cost than 

case 1.  The reason is that case 2 considers LR attacks compared 

with case 1 and assumes deterministic renewable generation 

without fluctuation compared with case 3. The same scenario is 

investigated in case 4 with DRO, where the two-stage scheme 

mitigates the adverse impact of LR attacks and reduces 2.4% 

cost compared to case 2. Similarly, case 5 yields $3981 

reduction compared to case 3 with less conservative DRO 

approach.  

With the increase of γ, the operation cost increases. Due to 

the characteristics of LR, although the overall load deviation is 

0, the total cost still increases with simply increasing the γ. The 

reason is that considering the potential LR attacks, DR-CED 

tends to satisfy all the loads and meanwhile prepare sufficient 

reserve for second-stage re-dispatch. Compared with case 5 

with 5% γ, with the increase of γ, cases 6-8 has 37%, 47% and 

56% higher cost.   

To investigate the impact of LR attacks and renewable 

uncertainties on scheduled generation, renewable generation 

and spinning reserve capacity, cases 1-5 are analysed in 

TABLE Ⅳ. Case 3 has the highest generation output, i.e., 

1760MWh, with the least scheduled renewable generation 

because both LR attacks and renewable uncertainties are 

considered in the worst case. With the consideration of LR 

attacks, case 2 yields 85MWh more generation. However, when 

using DRO, the generator output of case 4 is lower than case 1. 

The reason is that the two-stage scheme additionally considers 

reserve capacity in the first stage and adjusts generation scheme 

in the second stage, which reduces day-ahead scheduled 

generation, making up for the demand shortage in the real-time 

re-dispatch.  

When renewable uncertainty is additionally considered, case 

5 shows approximately similar results with case 4, i.e., both are 

180 MWh, while cases 3 produces much smaller renewable 

generation output than case 2. The reason is that both cases 2 

and 3 are the single-stage model and RO implements the worst-

case by simply reducing renewable generation. However, two-

stage DRO in case 5 considers the worst-distribution, which is 

less conservative and thus yields more renewable generation.  

In cases 4-8, the γ is increasing from 5% to 20%, which 

means the attacker could increase the load up to 120% of the 

original volume. In the case of overloading of branches, load 

shedding is required, which is shown in Fig. 5.  When the γ is 

5%, no load shedding is required in cases 4 and 5, since line 

capacity is able to defend LR attacks. When the γ increases to 

10%, $22000 load shedding cost is conducted. When the γ is up 

to 20%, it causes $110400 of load shedding.  

 

 
Fig. 3.  Computation performance for cases 4-6 in CGA. 

 
Fig. 4.  Total expected cost of case 4 based on different sample sizes. 
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       TABLE Ⅲ 
ECONOMIC PERFORMANCE FOR CASE 1-8 

Economic  

result ($) 
Case 1 Case 2 Case 3 Case 4 

First-stage cost 20087 95603 99699 19974 

Expected 

Second-stage 

cost 
0 0 0 73400 

Total cost 20087 95603   99699 93374 

Economic  

result ($) 
Case 5 Case 6 Case 7 Case 8 

First-stage cost 20718 21335 22596 24559 

Expected Second-

stage cost 
75000 110400 118600 125000 

Total cost 95718 131735 141196 149559 

 

TABLE Ⅳ 
DISPATCH PLAN FOR CASE 1-5 

Scheduled 

model (MWh) 
Case 1 Case 2 Case 3 Case 4 Case 5 

Generator 

output  
1498 1583 1760 1300 1653 

Renewable 

generation 
179 179 36 180 180 

Reserve 

capacity  
0 0 0 154 206 

 

 
Fig. 5.  Load shedding cost and proportion for cases 4-8. 
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C. Analysis of Flow and Load Shedding 

LR attacks have a significant impact on transmission lines, 

which is investigated as the flow-capacity ratio (FCR), 

representing the ratio of a branch flow over line capacity. Figs. 

6 and 7 present the FCR of lines 1-3, 9-10 and 8-28 for cases 3-

8. It is more likely that judicious attackers target at high-loading 

time periods and impose severe impacts. Thus, time periods 18 

and 19 are selected, which have the two highest load demand. 

Overall, line 1-3 has higher FCR than line 9-10 and 8-28 in all 

cases. In Fig. 7, it can be seen that case 4 has the lowest FCR 

since two-stage DRO is applied without considering renewable 

generation uncertainties. The FCR of case 3 is approximately 

20% higher than that in case 4, which indicates that RO is more 

prone to causing high FCR. The FCRs of cases 4 and 5 are 

almost the same, which indicates that renewable uncertainty 

does not cause a significant rise of FCR. When the γ increases 

from 5% to 20%, the FCRs of cases 5-8 increase. Case 8 has the 

highest FCR for among three discussed lines, 100%, 80% and 

90% respectively. Generally, FCR in Fig. 7 is higher than that 

in Fig. 6 since the load is higher.  

The system total load (34MWh) in the first time period is set 

as 1 p.u., defined as load base. The increase of the overall load 

will cause more load shedding over time. To investigate the 

impact of both γ and load base, Fig. 8 is presented. The key 

findings are: i) When the load base or γ increases, the load 

shedding increases. ii) The load shedding is nearly zero for all 

load buses when γ is lower, i.e., under 5%. iii) When the load 

base is fixed and only γ increases, for a low-level load base, e.g., 

34MWh, the load shedding increases slowly and only reaches 

107MWh; for a high-level load base, e.g., 39MWh, the load 

shedding increases fast. iv) When the γ is fixed and only the 

load base increases, the load shedding increases smoothly for γ 

under 20% but it increases fast or γ above 20%. 

VI. CONCLUSION 

A two-stage DRO approach is proposed in this paper to 

simultaneously mitigate uneconomic dispatch under potential 

LR attacks and renewable forecast uncertainties. The original 

optimization problem is reformulated into SDP form and solved 

by CGA. Through extensive case study demonstrations, the 

following key findings are as follows: 

▪ The real-time corrective dispatch in the second stage is 

useful for minimizing the dispatch costs and ensuring 

system security by load shedding.  

▪ Considering renewable forecast uncertainties leads to 

more conservative economic results, which is thus 

necessary and practical to consider in the modelling. 

▪ Both generation output and economic results are sensitive 

to the increase of γ. From case 5 to case 8, 15% increase 

of γ causes 19% additional dispatch cost. 

▪ DRO provides less-conservative results than RO, which 

provides system operators a more realistic and economical 

tool to conduct system operation.  

The proposed model can mitigate the uneconomic dispatch 

of power systems under LR attacks and renewable uncertainties, 

thus ensuring system supply security and maintaining the 

energy costs at the lowest level. Thus, the major beneficiaries 

are renewable generation, system operators and end customers. 

Notwithstanding the two-stage DRO framework provides an 

effective resilience enhancement and mitigation scheme for 

power system operation against cyber-attacks, the DRO 

technique can be further developed by constructing the recent 

distance-based ambiguity set. The more advanced DRO 

approach enables to maximally reduce the conservatism of 

uncertainty modelling while considering more distributional 

information. This paper adopts moment-base ambiguity set to 

handle the uncertain distribution, which may leads to strikingly 

different distributions and violates the real distributions. 

Distribution-based ambiguity sets are not constrained by 

parameter estimations, which incoporates all the possible 

distributions. This treatment yields a more reliable set and a 

more economic resilience enhancement strategy will be 

obtained. Accordingly, future research effort will be made on 

modelling and comparing different ambiguity sets for obtaining 

a more reliable optimization model. 

 
Fig. 6.  FCR for time period 18 in cases 3-8. 

                   

Fig. 7.  FCR for time period 19 in cases 3-8. 

 

Fig. 8.  Load shedding regarding different γ and load base. 
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NOMENCLATURE 

 
A. Cyber-Attack Modelling 

𝑧, 𝑥 Measurement and state variable. 

𝐡(𝐱) Nonlinear vector function of state variable. 

𝐞 Error measurement. 

𝐳𝐛𝐚𝐝, �̂�𝐛𝐚𝐝 Measurement and sate variable after the 

realization of false data injection (FDI). 

𝐜 Resulted deviation vector of state variable 

after FDI 

𝐖 Diagonal matrix of errors.   

𝐊𝐏 Bus-generator incidence matrix. 

𝐊𝐃 Bus-load incidence matrix. 

𝐒𝐅 Shift factor matrix. 

𝛾 Attack injection level. 

𝚫𝐆,𝚫𝐃, 𝚫𝐁𝐏, 

𝚫𝐏𝐋 

Incremental vector of generator output, bus 

power injection and line flow. 

𝐆, 𝐃, 𝐁𝐏, 𝐏𝐋 Vector of generator output, load demand, 

bus power injection and line flow. 

𝐏𝐋, 𝐏𝐋 Upper and lower limit of intial branch flow. 

B. Indices  

t, T Index and set for time periods.  

i, I Index and set for fuel generators. 

w, W Index and set for renewable generators.  

l, L Index and set for transmission lines. 

k, K Index and set for loads. 

 

C. Parameters  

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖  Cost coefficients for fuel generators.  

𝜆+, 𝜆− Cost coefficient for up and down spinning 

reserve. 

𝜆𝑖
𝑟𝑒 , 𝜆𝑤

𝑟𝑒 Regulation cost coefficient for fuel generator i 

and renewable generator w. 

𝜆𝑘
𝑙𝑠  Penalty cost coefficient for load shedding on 

demand k.  

𝜔𝑤
𝑓
(𝑡) Forecasted output of renewable generator j at 

time t. 

𝑅𝑒𝑠𝑖
+, 𝑅𝑒𝑠𝑖

− Maximum up and down spinning reserve 

capacity of fuel generator i at time t. 

𝑃𝑖,𝑚𝑎𝑥,𝑃𝑖,𝑚𝑖𝑛  Maximum and minimum output of fuel 

generator i.   

𝑥𝑙  Reactance of line l.  

𝑃𝐿𝑙,𝑚𝑎𝑥 Maximum line flow of line l.   

𝑃𝑘(𝑡) Load k at time t. 

𝑃𝑘,𝑚𝑎𝑥
𝑙𝑠 (𝑡) Maximum load shedding of load d at time t. 

 

D. Variables and functions 

𝑃𝑖
𝑠(𝑡),𝑃𝑖

𝑟𝑒(𝑡) Scheduled and regulated output of fuel 

generator i at time t. 

𝑟𝑒𝑠𝑖
+(𝑡), 𝑟𝑒𝑠𝑖

−(𝑡) Up and down spinning reserve of fuel 

generator i at time t. 

𝑃𝐿𝑙
𝑠(𝑡), 𝑃𝐿𝑙

𝑟𝑒(𝑡) Scheduled and regulated power flow 

at time t. 

𝑃𝐿𝑙
𝑠,𝑖𝑛𝑖(𝑡), 𝑃𝐿𝑙

𝑟𝑒,𝑖𝑛𝑖(𝑡) Scheduled and regulated power flow 

injection at time t. 

𝑃𝐿𝑙
𝑠,𝑡𝑒𝑟(𝑡), 𝑃𝐿𝑙

𝑟𝑒,𝑡𝑒𝑟(𝑡) Scheduled and regulated power flow 

at time t. 

𝜃𝑙
𝑠(𝑡), 𝜃𝑙

𝑟𝑒(𝑡) Phase angle of line l in the first and 

second stage.  

𝜔𝑤
𝑠 (𝑡), 𝜔𝑤

𝑟𝑒(𝑡) Scheduled and regulated renewable 

generation at time t. 

𝑃𝑘
𝑙𝑠(𝑡) Load shedding of load d at time t. 

x, y  Vectors of first and second stage 

variables. 

𝑃𝑟( ) Probability function. 

𝐸𝑃[ ] Expectation over distribution.  

〈 〉 Trace of matrix.  

𝛙𝟎,𝛙𝐣, 𝛹𝑗𝑘 , 𝜏 Dual variables.  

 

E. Uncertainty  

𝛏𝐫
 (𝐭) Uncertainty of renewable power forecast at 

time t.  

𝚫𝐏𝐤(𝐭) Load redistribution attack vector. 

𝐷𝑘, 𝐷𝑟 Ambiguity set for load redistribution attacks 

and renewable forecast uncertainty. 

𝛍𝐤, 𝛍𝐫 Mean vector for load redistribution attacks 

and renewable forecast uncertainty. 

𝚺𝐤, 𝚺𝐫 Covariance for load redistribution attacks and 

renewable forecast uncertainty. 

𝚯 Second moment matrix. 

𝑉𝑆 Polyhedral set of extreme points. 
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