3,038 research outputs found

    OctreeNet: A Novel Sparse 3-D Convolutional Neural Network for Real-Time 3-D Outdoor Scene Analysis

    Get PDF
    Convolutional neural networks (CNNs) for 3-D data analyses require a large size of memory and fast computation power, making real-time applications difficult. This article proposes a novel OctreeNet (a sparse 3-D CNN) to analyze the sparse 3-D laser scanning data gathered from outdoor environments. It uses a collection of shallow octrees for 3-D scene representation to reduce the memory footprint of 3-D-CNNs and performs point cloud classification on every single octree. Furthermore, the smallest non-trivial and non-overlapped kernel (SNNK) implements convolution directly on the octree structure to reduce dense 3-D convolutions to matrix operations at sparse locations. The proposed neural network implements a depth-first search algorithm for real-time predictions. A conditional random field model is utilized for learning global semantic relationships and refining point cloud classification results. Two public data sets (Semantic3D.net and Oakland) are selected to test the classification performance in outdoor scenes with different spatial sparsity. The experiments and benchmark test results show that the proposed approach can be effectively used in real-time 3-D laser data analyses. Note to Practitioners-This article was motivated by the limitations of existing deep learning technologies for analyzing 3-D laser scanning data. This technology enables robots to infer what the surroundings are, which is closely linked to semantic mapping and navigation tasks. Previous deep neural networks have seldom been used in robotic systems since they require a large amount of memory and fast computation power to apply dense 3-D operations. This article presents a sparse 3-D-Convolutional neural network (CNN) for real-time point cloud classification by exploiting the sparsity of 3-D data. This framework requires no GPUs. The practicality of the proposed method is verified on data sets gathered from different platforms and sensors. The proposed network can be adopted for other classification tasks with laser sensors

    Dynamic changes of main metabolic substances during anther-derived embryos development in loquat (Eriobotrya japonica Lindl. cv. ‘Dawuxing’)

    Get PDF
    The main metabolic substances changes during the development process of anther-derived embryos in loquat (Eriobotrya japonica Lindl. cv. ‘Dawuxing’) were studied. These include water contents, dry mass contents, carbohydrates, soluble proteins and nucleic acids. In the developmental stages of anther-derived embryos, the fresh weight and the dry mass contents increased gradually with the anther-derived embryos development as a whole. Soluble sugars, soluble protein and nucleic acid were closely related to the development and maturation of embryos, changing significantly in metabolism at the important development turning points. Soluble sugar, fructose and starch contents had the same change trend. The two accumulation peaks appeared at globular and cotyledon stages. During the development of loquat anther embryos, the dynamics of protein synthesis were roughly in "S" shape. The two accumulation peaks appeared at globular and cotyledon stage, respectively, in accordance with the change of sugar and starch. Alkaline protein contents were higher than acidic protein contents. Alkaline protein contents and total soluble protein contents had the same change trend during the development process. DNA contents and total nucleic acid contents had the same change trend during the development of anther-derived embryos. The DNA synthesis peaks appeared at the embryogenic callus stage. RNA contents were very low at embryogenic callus stage and cotyledon stage, while DNA was actively synthesized at the two stages.Key words: Eriobotrya japonica, anther culture, embryos, metabolic substances

    Effects of Linear-Polarized Near-Infrared Light Irradiation on Chronic Pain

    Get PDF
    In order to study the efficacy of linear-polarized near-infrared light irradiation (LPNIR) on relieving chronic pain in conjunction with nerve block (NB) or local block (LB), a 3-week prospective, randomized, double-blind, controlled study was conducted to evaluate the pre- and post-therapy pain intensity. Visual analogue scales (VASs) were measured in all patients before and 6 months after therapy visiting the pain clinic during the period of August 2007 to January 2008. A total of 52 patients with either shoulder periarthritis or myofascial pain syndrome or lateral epicondylitis were randomly assigned into two groups by drawing lots. Patients in Group I were treated with NB or LB plus LPNIR; Group II patients, for their part, were treated with the same procedures as in Group I, but not using LPNIR. In both groups, the pain intensity (VAS score) decreased significantly immediately after therapy as compared to therapy. There was a significant difference between the test and control groups immediately after therapy (P < 0.05), while no effect 6 months later. No side effects were observed. It is concluded that LPNIR is an effective and safe modality to treat various chronic pains, which has synergic effects with NB or LB

    A case of advanced mycosis fungoides with comprehensive skin and visceral organs metastasis: sensitive to chemical and biological therapy

    Get PDF
    AbstractMycosis fungoides is a common cutaneous T-cell lymphoma, which is usually characterized by chronic, indolence progression, with absence of typical symptoms in early stage, metastasis to lymph nodes, bone marrow and visceral organs in later stage and ultimately progression to systemic lymphoma. It can result in secondary skin infection which is a frequent cause of death. At present, no curative therapy existed. Therapeutic purpose is to induce remission, reduce tumor burden and protect immune function of patients. A case of patient with advanced severe mycosis fungoides receiving CHOP plus interferon α-2a was reported here, with disease-free survival of 7 months and overall survival of over 17.0 months, and current status as well as developments of mycosis fungoides were briefly introduced

    Routing Optimization of Intelligent Vehicle in Automated Warehouse

    Get PDF
    Routing optimization is a key technology in the intelligent warehouse logistics. In order to get an optimal route for warehouse intelligent vehicle, routing optimization in complex global dynamic environment is studied. A new evolutionary ant colony algorithm based on RFID and knowledge-refinement is proposed. The new algorithm gets environmental information timely through the RFID technology and updates the environment map at the same time. It adopts elite ant kept, fallback, and pheromones limitation adjustment strategy. The current optimal route in population space is optimized based on experiential knowledge. The experimental results show that the new algorithm has higher convergence speed and can jump out the U-type or V-type obstacle traps easily. It can also find the global optimal route or approximate optimal one with higher probability in the complex dynamic environment. The new algorithm is proved feasible and effective by simulation results

    Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas

    Get PDF
    BACKGROUND: Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L.), a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been systemically investigated. RESULTS: Transmission electron microscopy study revealed that the oil body formation in developing endosperm of jatropha seeds initially appeared at 28 days after fertilization (DAF), was actively developed at 42 DAF and reached to the maximum number and size at 56 DAF. Sixty-eight genes that encode enzymes, proteins or their subunits involved in fatty acid and lipid biosynthesis were identified from a normalized cDNA library of jatropha developing endosperm. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that the 68 genes could be collectively grouped into five categories based on the patterns of relative expression of the genes during endosperm development. Category I has 47 genes and they displayed a bell-shaped expression pattern with the peak expression at 28 or 42 DAF, but low expression at 14 and 56 DAF. Category II contains 8 genes and expression of the 8 genes was constantly increased from 14 to 56 DAF. Category III comprises of 2 genes and both genes were constitutively expressed throughout endosperm development. Category IV has 9 genes and they showed a high expression at 14 and 28 DAF, but a decreased expression from 42 to 56 DAF. Category V consists of 2 genes and both genes showed a medium expression at 14 DAF, the lowest expression at 28 or 42 DAF, and the highest expression at 56 DAF. In addition, genes encoding enzymes or proteins with similar function were differentially expressed during endosperm development. CONCLUSION: The formation of oil bodies in jatropha endosperm is developmentally regulated. The expression of the majority of fatty acid and lipid biosynthetic genes is highly consistent with the development of oil bodies and endosperm in jatropha seeds, while the genes encoding enzymes with similar function may be differentially expressed during endosperm development. These results not only provide the initial information on spatial and temporal expression of fatty acid and lipid biosynthetic genes in jatropha developing endosperm, but are also valuable to identify the rate-limiting genes for storage lipid biosynthesis and accumulation during seed development

    Physiological Ischemic Training Promotes Brain Collateral Formation and Improves Functions in Patients with Acute Cerebral Infarction

    Get PDF
    Objectives: To observe the effectiveness and mechanisms of physiological ischemic training (PIT) on brain cerebral collateral formation and functional recovery in patients with acute cerebral infarction.Methods: 20 eligible patients with acute cerebral infarction were randomly assigned to either PIT group (n = 10) or Control group (n = 10). Both groups received 4 weeks of routine rehabilitation therapy, while an additional session of PIT, which consisted of 10 times of maximal voluntary isometric handgrip for 1 min followed by 1 min rest, was prescribed for patients in the PIT groups. Each patient was trained with four sections a day and 5 days a week for 4 weeks. The Fugl-Meyer Assessment (FMA), the Modified Barthel Index (MBI), and the short-form 36-item health survey questionnaire (SF-36) were applied for the evaluation of motor impairment, activity of daily living, and quality of life at the baseline and endpoint. MRI was applied to detect the collateral formation in the brain. The concentration of vascular endothelial growth factor (VEGF) and endothelial progenitor cells (EPCs) number in plasma were also tested at the endpoint.Results: Demographic data were consistent between experimental groups. At the endpoint, the scores of the FMA, MBI, and SF-36 were significantly higher than that at baseline. As compared to the Control group, the score of FMA and SF-36 in PIT group was significantly higher, while no significant difference was detected between groups in terms of MBI. Both groups had significantly higher cerebral blood flow (CBF) level at endpoint as compared to that at baseline. Moreover, the CBF level was even higher in the PIT group as compared to that in the Control group after 4 weeks of training. The same situations were also found in the plasma VEGF and EPCs assessment. In addition, positive correlations were found between FMA score and CBF level (r = 0.686, p < 0.01), CBF level and VEGF concentration (r = 0.675, p < 0.01), and VEGF concentration and EPC number (r = 0.722, p < 0.01).Conclusion: PIT may be effective in increasing the expression of VEGF and recruitment of EPCs and in turn promote the formation of brain collateral circulation. The positive correlations may demonstrate a potential association between biological and functional parameters, and PIT may be able to improve the motor function, activity of daily living, and quality of life in patients with stroke.Interdisciplinary Division of Biomedical Engineerin

    Automatic Generation of Synthetic LiDAR Point Clouds for 3-D Data Analysis

    Get PDF
    The recent success of deep learning in 3-D data analysis relies upon the availability of large annotated data sets. However, creating 3-D data sets with point-level labels are extremely challenging and require a huge amount of human efforts. This paper presents a novel open-sourced method to extract light detection and ranging point clouds with ground truth annotations from a simulator automatically. The virtual sensor can be configured to simulate various real devices, from 2-D laser scanners to 3-D real-time sensors. Experiments are conducted to show that using additional synthetic data for training can: 1) achieve a visible performance boost in accuracy; 2) reduce the amount of manually labeled real-world data; and 3) help to improve the generalization performance across data sets

    Influence of Reducing Agents on Biosafety and Biocompatibility of Gold Nanoparticles

    Get PDF
    Extensive biomedical applications of nanoparticles are mainly determined by their safety and compatibility in biological systems. The aim of this study was to compare the biosafety and biocompatibility of gold nanoparticles (GNPs) prepared with HEPES buffer, which is popular for cell culture, and sodium citrate, a frequent reducing agent. From experimental results on the body weight and organ coefficients of acute oral toxicity tests, it could be observed that HEPES-prepared GNPs are biologically safer than citric-prepared GNPs at the same dose of 500 μg/kg. The in vitro cell viability was higher for HEPES-prepared GNPs than citric-prepared GNPs at 5.0- and 10.0-ug/mL concentrations. More reactive oxygen species (ROS) were generated in the cell suspension when supplemented with citric-prepared GNPs than HEPES-prepared GNPs when their concentrations were higher than 20 μg/mL. The results stated that HEPES-prepared GNPs had better biosafety and biocompatibility than citric-prepared GNPs. This study not only revealed the influence of reducing agent on biosafety and biocompatibility of nanomaterials but also provided accumulative evidence for nanomaterials in biomedical applications. [Figure: see text
    corecore