41 research outputs found

    Conceal an entrance by means of superscatterer

    Full text link
    By using the novel property of the rectangular superscatterer, we propose a design which can conceal an entrance from electromagnetic wave detection. Such a superscatterer is realized by coating a negative index material shell on a perfect electrical conductor rectangle cylinder. The results are numerically confirmed by full-wave simulations both in the far-field and near-field.Comment: 10 pages, 4 figure

    Low frequency elastic wave propagation in 2D locally resonant phononic crystal with asymmetric resonator

    Full text link
    The resonance modes and the related effects to the transmission of elastic waves in a two dimensional phononic crystal formed by periodic arrangements of a two blocks unit cell in one direction are studied. The unit cell consists of two asymmetric elliptic cylinders coated with silicon rubber and embedded in a rigid matrix. The modes are obtained by the semi-analytic method in the least square collocation scheme and confirmed by the finite element method simulations. Two resonance modes, corresponding to the vibration of the cylinder along the long and short axes, give rise to resonance reflections of elastic waves. One mode in between the two modes, related to the opposite vibration of the two cylinders in the unit cell in the direction along the layer, results in the total transmission of elastic waves due to zero effective mass density at the frequency. The resonance frequency of this new mode changes continuously with the orientation angle of the elliptic resonator.Comment: 17 pages, 7 figure

    Rolling Element Bearing Performance Degradation Assessment Using Variational Mode Decomposition and Gath-Geva Clustering Time Series Segmentation

    Get PDF
    By focusing on the issue of rolling element bearing (REB) performance degradation assessment (PDA), a solution based on variational mode decomposition (VMD) and Gath-Geva clustering time series segmentation (GGCTSS) has been proposed. VMD is a new decomposition method. Since it is different from the recursive decomposition method, for example, empirical mode decomposition (EMD), local mean decomposition (LMD), and local characteristic-scale decomposition (LCD), VMD needs a priori parameters. In this paper, we will propose a method to optimize the parameters in VMD, namely, the number of decomposition modes and moderate bandwidth constraint, based on genetic algorithm. Executing VMD with the acquired parameters, the BLIMFs are obtained. By taking the envelope of the BLIMFs, the sensitive BLIMFs are selected. And then we take the amplitude of the defect frequency (ADF) as a degradative feature. To get the performance degradation assessment, we are going to use the method called Gath-Geva clustering time series segmentation. Afterwards, the method is carried out by two pieces of run-to-failure data. The results indicate that the extracted feature could depict the process of degradation precisely

    H∞ Filter Design for Networked Control Systems: A Markovian Jump System Approach

    No full text
    This paper puts forward a method to design the H∞ filter for networked control systems (NCSs) with time delay and data packet loss. Based on the properties of Markovian jump system, the packet loss is treated as a constant probability independent and identically distributed Bernoulli random process. Thus, the stochastic stability condition can be acquired for the filtering error system, which meets an H∞ performance index level γ. It is shown that, by introducing a special structure of the relaxation matrix, a linear representation of the filter meeting an H∞ performance index level for NCSs with time delay and packet loss can be obtained, which uses linear matrix inequalities (LMIs). Finally, numerical simulation examples demonstrate the effectiveness of the proposed method
    corecore