325 research outputs found
Perchlorate environmental occurrences, health effects, and remediation technologies
Perchlorate is a widespread pollutant in the environment. It can be produced naturally by atmospheric photochemical reactions or synthesized in large quantities for industrial, military, and pyrotechnic applications. Perchlorate can affect human thyroid function by interfering with iodide uptake and thus has significant public health ramifications. This presentation will provide the current state of science and technology with respect to the source and occurrence of perchlorate in natural environments, its risk assessment, and recent advances in treatment technologies to remove perchlorate from contaminated water. Although perchlorate is a powerful oxidant, it is highly soluble and stable in water and soil and can thus persist in the environment. The discussion will focus on various treatment technologies such as selective ion exchange, reverse osmosis, and biological reduction which can be used to remove perchlorate from contaminated water and thus to minimize its health risks to the public.peer-reviewe
Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam
We report on the use of a radially polarized beam for photothermal therapy of cancer cells labeled with gold nanorods. Due to a three-dimensionally distributed electromagnetic field in the focal volume, the radially polarized beam is proven to be a highly efficient laser mode to excite gold nanorods randomly oriented in cancer cells. As a result, the energy fluence for effective cancer cell damage is reduced to one fifth of that required for a linearly polarized beam, which is only 9.3% of the medical safety level.<br /
Recommended from our members
Alkaline dechlorination of chlorinated volatile organic compounds
The vast majority of contaminated sites in the United States and abroad are contaminated with chlorinated volatile organic compounds (VOCs) such as trichloroethylene (TCE), trichloroethane (TCA), and chloroform. These VOCs are mobile and persistent in the subsurface and present serious health risks at trace concentrations. The goal of this project was to develop a new chemical treatment system that can rapidly and effectively degrade chlorinated VOCs. The system is based on our preliminary findings that strong alkalis such as sodium hydroxide (NaOH) can absorb and degrade TCE. The main objectives of this study were to determine the reaction rates between chlorinated VOCs, particularly TCE, and strong alkalis, to elucidate the reaction mechanisms and by-products, to optimize the chemical reactions under various experimental conditions, and to develop a laboratory bench- scale alkaline destruction column that can be used to destroy vapor- phase TCE
Methylmercury uptake and degradation by methanotrophs
Methylmercury (CH3Hg+) is a potent neurotoxin produced by certain anaerobic microorganisms in natural environments. Although numerous studies have characterized the basis of mercury (Hg) methylation, no studies have examined CH3Hg+ degradation by methanotrophs, despite their ubiquitous presence in the environment. We report that some methanotrophs, such as Methylosinus trichosporium OB3b, can take up and degrade CH3Hg+ rapidly, whereas others, such as Methylococcus capsulatus Bath, can take up but not degrade CH3Hg+. Demethylation by M. trichosporium OB3b increases with increasing CH3Hg+ concentrations but was abolished in mutants deficient in the synthesis of methanobactin, a metal-binding compound used by some methanotrophs, such as M. trichosporium OB3b. Furthermore, addition of methanol (>5 mM) as a competing one-carbon (C1) substrate inhibits demethylation, suggesting that CH3Hg+ degradation by methanotrophs may involve an initial bonding of CH3Hg+ by methanobactin followed by cleavage of the CâHg bond in CH3Hg+ by the methanol dehydrogenase. This new demethylation pathway by methanotrophs indicates possible broader involvement of C1-metabolizing aerobes in the degradation and cycling of toxic CH3Hg+ in the environment
Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed
We investigated rates and controls on greenhouse gas (CO2 and CH4) production in two contrasting waterâsaturated tundra soils within a permafrostâaffected watershed near Nome, Alaska, United States. Three years of field sample analysis have shown that soil from a fenâlike area in the toeslope of the watershed had higher pH and higher porewater ion concentrations than soil collected from a bogâlike peat plateau at the top of the hillslope. The influence of these contrasting geochemical and topographic environments on CO2 and CH4 production was tested in soil microcosms by incubating both the organicâ and mineralâlayer soils anaerobically for 55 days. Nitrogen (as NH4Cl) was added to half of the microcosms to test potential effects of N limitation on microbial greenhouse gas production. We found that the organic toeslope soils produced more CO2 and CH4, fueled by higher pH and higher concentrations of waterâextractable organic C (WEOC). Our results also indicate N limitation on CO2 production in the peat plateau soils but not the toeslope soils. Together these results suggest that the weathering and leaching of ions and nutrients from tundra hillslopes can increase the rate of anaerobic soil organic matter decomposition in downslope soils by (1) increasing the pH of soil porewater; (2) providing bioavailable WEOC and fermentation products such as acetate; and (3) relieving microbial N limitation through nutrient runoff. We conclude that the soil geochemistry as mediated by landscape position is an important factor influencing the rate and magnitude of greenhouse gas production in tundra soils
Recommended from our members
Microcantilever Sensors for In-Situ Subsurface Characterization
Real-time, in-situ analysis is critical for decision makers in environmental monitoring, but current techniques for monitoring and characterizing radionuclides rely primarily on liquid scintillation counting, ICP-MS, and spectrofluorimetry, which require sample handling and labor intensive lengthy analytical procedures. Other problems that accompany direct sampling include adherence to strict holding times and record maintenance for QA/QC procedures. Remote, automated sensing with direct connection to automated data management is preferred
Uninformative Biological Variability Elimination in Apple Soluble Solids Content Inspection by Using Fourier Transform Near-Infrared Spectroscopy Combined with Multivariate Analysis and Wavelength Selection Algorithm
Uninformative biological variability elimination methods were studied in the near-infrared calibration model for predicting the soluble solids content of apples. Four different preprocessing methods, namely, Savitzky-Golay smoothing, multiplicative scatter correction, standard normal variate, and mean normalization, as well as their combinations were conducted on raw Fourier transform near-infrared spectra to eliminate the uninformative biological variability. Subsequently, robust calibration models were established by using partial least squares regression analysis and wavelength selection algorithms. Results indicated that the partial least squares calibration models with characteristic variables selected by CARS method coupled with preprocessing of Savitzky-Golay smoothing and multiplicative scatter correction had a considerable potential for predicting apple soluble solids content regardless of the biological variability
Recommended from our members
Field-scale evaluation of biological uranium reduction and reoxidation in the near-source zone at the NABIR Field Research Center in Oak Ridge, TN
The primary objective of the project is to advance the understanding and predictive capability of coupled hydrological, geochemical, and microbiological processes that control the in situ transport and bioremediation radionuclides and co-contaminants at multiple scales. Specific objectives include: (1) Investigate the feasibility of in situ bioremediation of uranium in a highly contaminated region within the subsurface of Area 3 of the DoE ERSP FRC (2) Using a variety of tracer strategies, develop and model a system that establishes hydraulic control of the target region for biostimulation (3) Perform long term in situ biostimulation studies that create a microbial communities capable of reducing residual nitrate to N2 and mobile U(VI) to sparingly soluble U(IV) (4) Use a variety of solid and solution phase interrogation techniques to quantify the extent of in situ reduction and immobilization of U(VI). (5) Investigate a variety of geochemical factors that influence the stability and possible reoxidation of reduced uranium
Recommended from our members
Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge Tennessee
The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR)
- âŠ