5 research outputs found

    An r -process enhanced star in the dwarf galaxy Tucana III

    Get PDF
    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66−593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain rprocess enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. We explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them

    Photometric redshift analysis in the Dark Energy Survey science verification data

    Get PDF
    We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey.We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z’s are obtained and studied using most of the existing photo-z codes. A weighting method in a multidimensional colour–magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions σ68 ∼ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets

    An r -process enhanced star in the dwarf galaxy Tucana III

    Get PDF
    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66−593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain rprocess enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. We explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them

    Farthest neighbor : the distant Milky Way satellite Eridanus II

    Get PDF
    We present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite EridanusII (Eri II). We identify 28 member stars in EriII, from which we measure a systemic radial velocity of vhel = 75.6 1.3 (stat.) 2.0 (sys.) km s-1 and a velocity dispersion of - 6.9+0.9 1.2 km s-1. Assuming that EriII is a dispersion-supported system in dynamical equilibrium, we derive a mass within the half-light radius of - ´ 1.2+ 10 0.3 0.4 7 M, indicating a mass-tolight ratio of - 420+140 210 M/L and confirming that it is a dark matter-dominated dwarf galaxy. From the equivalent width measurements of the Ca triplet lines of 16 red giant member stars, we derive a mean metallicity of [Fe/ H]=−2.38±0.13 and a metallicity dispersion of s[ / ] = - 0.47+ Fe H 0.09 0.12. The velocity of EriII in the Galactic standard of rest frame is vGSR=−66.6 km s-1, indicating that either EriII is falling into the Milky Way potential for the first time or that it has passed the apocenter of its orbit on a subsequent passage. At a Galactocentric distance of 370 kpc, Eri II is one of the Milky Way’s most distant satellites known. Additionally, we show that the bright blue stars previously suggested to be a young stellar population are not associated with EriII. The lack of gas and recent star formation in EriII is surprising given its mass and distance from the Milky Way, and may place constraints on models of quenching in dwarf galaxies and on the distribution of hot gas in the Milky Way halo. Furthermore, the large velocity dispersion of Eri II can be combined with the existence of a central star cluster to constrain massive compact halo object dark matter with mass 10 M

    A stellar overdensity associated with the Small Magellanic Cloud

    Get PDF
    We report the discovery of a stellar overdensity 8◦ north of the centre of the Small Magellanic Cloud (SMC; Small Magellanic Cloud Northern Over-Density; SMCNOD), using data from the first 2 yr of the Dark Energy Survey (DES) and the first year of theMAGellanic SatelLITEs Survey (MagLiteS). The SMCNOD is indistinguishable in age, metallicity and distance from the nearby SMC stars, being primarily composed of intermediate-age stars (6 Gyr, Z=0.001), with a small fraction of young stars (1 Gyr, Z=0.01). The SMCNOD has an elongated shape with an ellipticity of 0.6 and a size of 6◦ × 2◦. It has an absolute magnitude of MV = −7.7, rh = 2.1 kpc, and μV(r < rh) = 31.2 mag arcsec−2. We estimate a stellar mass of 105 M , following a Kroupa mass function. The SMCNOD was probably removed from the SMC disc by tidal stripping, since it is located near the head of the Magellanic Stream, and the literature indicates likely recent Large Magellanic Cloud-SMC encounters. This scenario is supported by the lack of significant HI gas. Other potential scenarios for the SMCNOD origin are a transient overdensity within the SMC tidal radius or a primordial SMC satellite in advanced stage of disruption
    corecore