11 research outputs found
Scale problems in assessment of hydrogeological parameters of groundwater flow models
An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity,
being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approach-
es. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive
summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part
of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which
definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system,
(ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the
system and (iv) continuity /granularity of natural and man-related variables of groundwater flow system. Scales used
in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample,
macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard
and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for
the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim
to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling
are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is
a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models
to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to
The role of reservoirs under the impacts of climate change on the Srepok River basin, Central Highlands of Vietnam
Forecasting streamflow is important for managing future water resources and environmental needs under the impacts of climate change. Moreover, quantifying the combined effects of future climate variations and human-made infrastructures, e.g., dams and reservoirs, poses a significant challenge. In this study, we used the Soil and Water Assessment Tool (SWAT) for a case study in the Srepok River Basin—a tributary of the Mekong River Basin. Here, we aim to reveal the impacts of various climate change scenarios and the effects of reservoir operations in this region. Our findings indicate that 1) the projected annual streamflow is anticipated to increase by a minimum of 9.2% (2046–2065) and could peak at an increase of 14.9% (2080–2099) under the highest greenhouse gas emissions, 2) Srepok 4, Srepok 3, and Buon Kuop demonstrate a higher capability for mitigating flood peaks and managing seasonal flow in the downstream floodplain, whereas Buon Tua Srah shows the least performance, and 3) reservoirs operated with annual regulation have more pronounced impacts than those regulated on a daily schedule. Our work provides i) a scientific foundation for regional stakeholders and decision-makers to develop sustainable strategies that address the combined effects of reservoir operation and future climate, and ii) it supports national authorities and officials in resolving conflicts related to transboundary rivers within the Mekong River Basin
Scale problems in assessment of hydrogeological parameters of groundwater flow models
An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to
Analiza metod scalania arkuszy Numerycznego Modelu Terenu na przykładzie zlewni rzeki Kamiennej i Iłżanki
Numeryczny Model Terenu znajduje coraz częstsze zastosowanie w inżynierii środowiska. Zaprezentowano aplikację pozwalającą na zamianę arkusza NMT w formacie TIN na rastrowy, a następnie połączenie wielu rastrów w jeden (mozaikowanie). Analizie poddano dokładność uzyskiwanych modeli w miejscach nakładania się arkuszy NMT. Łącznie analizie poddano 48 modeli rastrowych uzyskanych 2 metodami interpolacji, o 4 różnych rozdzielczościach i połączonymi za pomocą 6 metod mozaikowania
Modelling of Groundwater–Surface Water Interaction Applying the Hyporheic Flux Model
The objective of the present paper is to develop a methodology that could allow the representation of the analytical hyporheic flux equation model (AHF) in a numerical model done in MODFLOW. Therefore, the scope of the research is to show the viability of the methodology suggested in a real case (Biebrza river, Poland, Europe). Considering that the model requires extensive manipulation in the creation of the packages, a test phase through the seepage package of MODFLOW is carried out with the aim of representing the river package of MODFLOW. FloPy is the tool chosen to develop this implementation due to the versatility of manipulating the packages available in MODFLOW through coding. The obtained results showed a correct implementation of the AHF model using the example of the Biebrza River. The results obtained will enable a better understanding regarding the modelling of the interaction between the river and the aquifer, considering streams with specific geometries where the depth is dimensionally higher than the width
Przestrzenny rozkład wymiany wody w przekroju rzeki : pomiary i model numeryczny
The aspects of surface stability and groundwater exchange recognized by many researchers due to the intensification of agriculture and industry (manifested in, e.g., regulation and dredging of riverbed sediments of rivers) are now widely discussed on the international forum of water policy and management. It is essential to assess the spatial variability of water exchange through the river length and cross sections for the preparation of data and calculation of the groundwater flow model. This article presents research which describes the spatial distribution of the surface water-groundwater interaction within the river cross-section. Two measurement series were carried out to describe its variability. Additionally, a groundwater flow model was developed to simulate and represent the variable nature of water exchange in the hyporheic zone in the river’s cross-section. The model was successfully verified by means of measurements of water flux in the hyporheic zone. The precise spatial description of this variability is the first step to determine the possibility of introducing this variable in an accurate manner, within the limits of measurement uncertainties or simulation assumptions, in the construction of mathematical models of groundwater flow.Problem opisu interakcji wód powierzchniowych i podziemnych jest podejmowany przez wielu badaczy, między innymi ze względu na intensyfikację rolnictwa i przemysłu przejawiające się m.in. regulacją i pogłębianiem osadów rzecznych rzek. Problemy te są obecnie szeroko dyskutowane na międzynarodowym forum polityki i gospodarki wodnej. Do przygotowania danych i obliczenia modelu przepływu wód podziemnych niezbędna jest ocena zmienności wymiany wody na długości rzeki i jej przekrojach. W artykule przedstawiono badania opisujące przestrzenną zmienność interakcji wód powierzchniowych i podziemnych w przekroju rzeki. Aby opisać tą zmienność, przeprowadzono dwie kampanie pomiarowe. Dodatkowo opracowano model przepływu wód podziemnych w celu przedstawienia zmiennego charakteru wymiany wody w strefie hyporeicznej w przekroju rzeki. Model został pomyślnie zweryfikowany za pomocą pomiarów przepływu wody w strefie hyporeicznej. Dokładny przestrzenny opis zmienności przestrzennej intensywności wymiany wody pomiędzy rzeką a warstwą wodonośną jest pierwszym krokiem do określenia możliwości dokładnego wprowadzenia tej zmiennej do budowy modeli matematycznych przepływu wód podziemnych
The role of the river in the functioning of marginal fen: a case study from the Biebrza Wetlands
Study region The area of interest is the Upper Biebrza Valley, located in NE Poland. Study focus We examined water exchange at the river-fen interface in a near-natural wetland system using the combined field research-modeling approach. The authors chose the Biebrza River as the research object: it is a specific case of fen marginal valley rivers, and it flows in the peat layer without direct connection to the mineral soil layer. Our case study introduces two new aspects not yet considered in the scientific literature: (1) the riparian aquifer is fen and (2) the river has no direct contact with the mineral layer. The following research questions were investigated: What is the role of the river in feeding and draining a fen? Which drainage paths are important for water exchange in a near-natural river-fen system? How important are the morphological settings for the river-fen relations? We applied a systematic hydrological research approach based on field measurements and observations of the river and surrounding fen hydrological characteristics, as well as on the modelling results. New hydrological insights for the region We demonstrated that morphological settings have a significant influence on river-fen relations. We also demonstrated that due to the undeniable need to introduce increased protection and restoration of marginal fens, we may focus on river status in narrow valleys; however, in the wide valleys, the limitation of the drainage layer by decreasing the intensity of evapotranspiration is more promising. We propose to distinguish zones in the fen river valley to include them when proposing protection or conservation plans
Assessment of Urbanization-Induced Land-Use Change and Its Impact on Temperature, Evaporation, and Humidity in Central Vietnam
In the present day, the acceleration of urban surface heat impacts resulting from urbanization and industrialization is critical for citizens and municipal governments in developing-country cities. The previous key findings have indicated the association between urban surface heat and the following areas: forests, mixed agricultural land, built-up area, and water bodies. This study was motivated by a lack of knowledge regarding the variation of temperature, evaporation, and humidity in Central Vietnam’s major region. The non-parametric Mann–Kendall test, Sen’s slope estimator, and Landsat image analysis were employed to determine the trend and statistical significance of the variables across the 42-year study period for Da Nang city and Quang Nam province. Our results show that Da Nang city has a consistent trend with a high correlation between temperature, evaporation, and relative humidity, whereas Quang Nam province showed an inverse relationship between temperature and relative humidity since the beginning of the regional urbanization. The maximum, minimum, and mean temperatures have increased by at least 0.29 °C in Quang Nam province and 0.71 °C in Da Nang city since 2000. Between 1979 and 2021, the frequency of days with temperatures exceeding 35 °C has increased by two and seven days during the past decade at the meteorological stations in Da Nang and Tam Ky, respectively. The temperature in Da Nang city varied from 31.80 °C to 32.82 °C with high temperatures concentrated in urbanized regions with less coverage of small trees, plants, and water bodies. Thus, the results of this study will serve as a scientific basis for decision-makers and regional officials for land-use management and to increase community awareness of sustainable planning, particularly in Da Nang city and Quang Nam province in Central Vietnam
Quantification of Gridded Precipitation Products for the Streamflow Simulation on the Mekong River Basin Using Rainfall Assessment Framework: A Case Study for the Srepok River Subbasin, Central Highland Vietnam
Many fields have identified an increasing need to use global satellite precipitation products for hydrological applications, especially in ungauged basins. In this study, we conduct a comprehensive evaluation of three Satellite-based Precipitation Products (SPPs): Integrated Multi–satellitE Retrievals for GPM (IMERG) Final run V6, Soil Moisture to Rain (SM2RAIN)-Advanced SCATterometer (ASCAT) V1.5, and Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2 for a subbasin of the Mekong River Basin (MRB). The study area of the Srepok River basin (SRB) represents the Central Highland sub-climatic zone in Vietnam under the impacts of newly built reservoirs during 2001–2018. In this study, our evaluation was performed using the Rainfall Assessment Framework (RAF) with two separated parts: (1) an intercomparison of rainfall characteristics between rain gauges and SPPs; and (2) a hydrological comparison of simulated streamflow driven by SPPs and rain gauges. Several key findings are: (1) IMERGF-V6 shows the highest performance compared to other SPP products, followed by SM2RAIN-ASCAT V1.5 and MSWEP V2.2 over assessments in the RAF framework; (2) MSWEP V2.2 shows discrepancies during the dry and wet seasons, exhibiting very low correlation compared to rain gauges when the precipitation intensity is greater than 15 mm/day; (3) SM2RAIN–ASCAT V1.5 is ranked as the second best SPP, after IMERGF-V6, and shows good streamflow simulation, but overestimates the wet seasonal rainfall and underestimates the dry seasonal rainfall, especially when the precipitation intensity is greater than 20 mm/day, suggesting the need for a recalibration and validation of its algorithm; (4) SM2RAIN-ASCAT had the lowest bias score during the dry season, indicating the product’s usefulness for trend analysis and drought detection; and (5) RAF shows good performance to evaluate the performance of SPPs under the impacts of reservoirs, indicating a good framework for use in other similar studies. The results of this study are the first to reveal the performance of MSWEP V2.2 and SM2RAIN-ASCAT V1.5. Additionally, this study proposes a new rainfall assessment framework for a Vietnam basin which could support future studies when selecting suitable products for input into hydrological model simulations in similar regions