30 research outputs found

    Influence of high- and low-fermentable dietary fibres in sows' diet on the colostrum potential against Clostridioides difficile toxin-induced effects in IPEC-J2 cells

    Get PDF
    Sow colostrum has been reported to protect the IPEC-J2 cells and piglet colon tissues from detrimental effect of Clostridioides difficile toxins. Since dietary fibre can influence the colostrum composition in sows, we hypothesised that it can also differentially affect the colostrum potential against C. difficile toxin-induced effects in IPEC-J2. IPEC-J2 were incubated with colostrum from sows fed either high-fermentable sugar beet pulp (SBP) or low-fermentable lignocellulose (LNC) fibres and in combination with the toxins and analysed by trans-epithelial electrical resistance (TEER) and cell viability using propidium iodide in flow cytometry. Toxins drastically decreased the integrity of IPEC-J2. Colostrum from the sows fed either SBP or LNC exerted protective effect against toxins on IPEC-J2 integrity and this effect was numerically superior in the SBP group. Differences in the percentages of TEER between different treatments were noted after 2 h (p = 0.043), 3 h (p = 0.017) and 4 h (p = 0.017) of incubation and a tendency for differences was noted after 5 h of incubation (p = 0.071). Colostrum from either SBP- or LNC-fed sows did not protect the IPEC-J2 from toxin-induced death. Colostrum of the sows fed either high-fermentable or low-fermentable fibres has a potential to protect IPEC-J2 from the loss of integrity, which may be important in protection from C. difficile-infection development in neonatal piglets

    Porcine Colostrum Protects the IPEC-J2 Cells and Piglet Colon Epithelium against Clostridioides (syn. Clostridium) difficile Toxin-Induced Effects

    Get PDF
    Clostridioides difficile toxins are one of the main causative agents for the clinical symptoms observed during C. difficile infection in piglets. Porcine milk has been shown to strengthen the epithelial barrier function in the piglet’s intestine and may have the potential to neutralise clostridial toxins. We hypothesised that porcine colostrum exerts protective effects against those toxins in the IPEC-J2 cells and in the colon epithelium of healthy piglets. The IPEC-J2 cells were treated with either the toxins or porcine colostrum or their combination. Analyses included measurement of trans-epithelial electrical resistance (TEER), cell viability using propidium iodide by flow cytometry, gene expression of tight junction (TJ) proteins and immune markers, immunofluorescence (IF) histology of the cytoskeleton and a TJ protein assessment. Colon tissue explants from one- and two-week-old suckling piglets and from five-week-old weaned piglets were treated with C. difficile toxins in Ussing chamber assays to assess the permeability to macromolecules (FITC-dextran, HRP), followed by analysis of gene expression of TJ proteins and immune markers. Toxins decreased viability and integrity of IPEC-J2 cells in a time-dependent manner. Porcine colostrum exerted a protective effect against toxins as indicated by TEER and IF in IPEC-J2 cells. Toxins tended to increase paracellular permeability to macromolecules in colon tissues of two-week-old piglets and downregulated gene expression of occludin in colon tissues of five-week-old piglets (p = 0.05). Porcine milk including colostrum, besides other maternal factors, may be one of the important determinants of early immune programming towards protection from C. difficile infections in the offspring

    Porcine and Chicken Intestinal Epithelial Cell Models for Screening Phytogenic Feed Additives—Chances and Limitations in Use as Alternatives to Feeding Trials

    Get PDF
    Numerous bioactive plant additives have shown various positive effects in pigs and chickens. The demand for feed additives of natural origin has increased rapidly in recent years to support the health of farm animals and thus minimize the need for antibiotics and other drugs. Although only in vivo experiments can fully represent their effect on the organism, the establishment of reliable in vitro methods is becoming increasingly important in the goal of reducing the use of animals in experiments. The use of cell models requires strict control of the experimental conditions so that reliability and reproducibility can be achieved. In particular, the intestinal porcine epithelial cell line IPEC-J2 represents a promising model for the development of new additives. It offers the possibility to investigate antioxidative, antimicrobial, anti- or pro-proliferative and antiviral effects. However, the use of IPEC-J2 is limited due to its purely epithelial origin and some differences in its morphology and functionality compared to the in vivo situation. With regard to chickens, the development of a reliable intestinal epithelial cell model has attracted the attention of researchers in recent years. Although a promising model was presented lately, further studies are needed to enable the standardized use of a chicken cell line for testing phytogenic feed additives. Finally, co-cultivation of the currently available cell lines with other cell lines and the development of organoids will open up further application possibilities. Special emphasis was given to the IPEC-J2 cell model. Therefore, all publications that investigated plant derived compounds in this cell line were considered. The section on chicken cell lines is based on publications describing the development of chicken intestinal epithelial cell models

    Fiber Composition in Sows’ Diets Modifies Clostridioides difficile Colonization in Their Offspring

    Get PDF
    Dietary fiber has a potential to modulate the gut microbiota in sows. We hypothesized that a maternal diet rich in either high- or low-fermentable fiber during gestation and lactation influences Clostridioides difficile gut colonization in suckling piglets. Twenty sows were fed gestation and lactation diets enriched with either high-fermentable sugar beet pulp (SBP) or low-fermentable lignocellulose (LNC) fibers. C. difficile, toxin B (TcdB), fecal score, microbial abundance (16S-rDNA sequencing) and metabolites were measured in the feces from the sows and their piglets. C. difficile concentration was higher in piglets from the sows fed LNC than SBP along the study (P ≀ 0.05). Higher prevalence of C. difficile was noted in three-week-old piglets from sows fed LNC vs. SBP (45% vs. 0%, P = 0.001). TcdB prevalence was higher in six-day-old piglets from the sows fed LNC vs. SBP (60% vs. 17%, P = 0.009). In sows, fecal microbial metabolites were higher in SBP than LNC, while C. difficile concentration showed no difference. Higher microbial diversity Shannon index was noted in sows from SBP vs. LNC one week before parturition and at the parturition (P ≀ 0.05). Piglets from SBP vs. LNC tended to have higher microbial diversity Shannon index at two and three weeks of age. Diets enriched with high-fermentable fiber compared to low-fermentable fiber in sows reduced C. difficile colonization in their piglets. Susceptibility to colonization by C. difficile in neonatal piglets can be modulated by the sows’ diet, supporting the hypothesis of the early microbial programming in the offspring and the importance of the sow-piglet couple

    Dietary fiber and its role in performance, welfare, and health of pigs

    Get PDF
    Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs

    Why do microorganisms produce rhamnolipids?

    Full text link
    corecore