14 research outputs found

    Design, modelling and preliminary characterisation of microneedle-based electrodes for tissue electroporation in vivo

    Get PDF
    We analysed the use of microneedle-based electrodes to enhance electroporation of mouse testis with DNA vectors for production of transgenic mice. Different microneedle formats were developed and tested, and we ultimately used electrodes based on arrays of 500 μm tall microneedles. In a series of experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP) and electroporation using microneedle electrodes and a commercially available voltage supply, we compared the performance of flat and microneedle electrodes by measuring GFP expression at various timepoints after electroporation. Our main finding, supported by both experimental and simulated data, is that needles significantly enhanced electroporation of testis

    Diffuse reflectance spectroscopy-enhanced drill for bone boundary detection

    Get PDF
    Intramedullary nailing is a routine orthopedic procedure used for treating fractures of femoral or tibial shafts. A critical part of this procedure involves the drilling of pilot holes in both ends of the bone for the placement of the screws that will secure the IM rod to sections of the fractured bone. This step introduces a risk of soft tissue damage because the drill bit, if not stopped in time, can transverse the bone-tissue boundary into the overlying muscle, causing unnecessary injury and prolonging healing time due to periosteum damage. In this respect, detecting the bone-tissue boundary before break-through can reduce the risks and complications associated with intramedullary nailing. Hence, in the present study, a two-wavelength diffuse reflectance spectroscopy technique was integrated into a surgical drill to optically detect bone-tissue boundary and automatically trigger the drill to stop. Furthermore, Monte-Carlo simulations were used to estimate the maximum distance from within the bone at which the bone-tissue boundary could be detected using DRS. The simulation results estimated that the detection distance, termed the “look-ahead-distance” was ∼1.5 mm for 1.3 mm source-detector fiber separation. Experimental measurements with 1.3 mm source-detector fiber separation showed that the look-ahead-distance was in the order of 250 µm in experiments with set drill rate and in the range of 1 mm in experiments where the holes were drilled by hand. Despite this difference, the automated DRS enhanced drill successfully detected the approaching bone tissue boundary when tested on samples of bovine femur and muscle tissue

    Non-invasive lung oxygen monitoring in term infants: a pilot trial

    Get PDF
    Employing non-invasive GASMAS based system, lung oxygen measurements were performed on 25 healthy term infants on various chest positions. Oxygen and water vapor absorption signal was detected on most occasions

    Wavelength selection using diffuse reflectance spectra and machine learning algorithms for tissue differentiation in orthopedic surgery

    Get PDF
    DRS-based measurements of tissue types encountered in orthopedic surgery are utilized to establish a wavelength selection methodology using machine learning techniques, which enables rapid development of clinically translatable optical system

    Automated tissue boundary detection

    Get PDF
    To address the challenge of tissue differentiation during cranial perforation surgery, presented research aims to integrate optical illumination and detection capability into rotating assemblies of surgical tools

    Diffuse reflectance spectroscopy for determination of optical properties and chromophore concentrations of mice internal organs in the range of 350 nm to 1860 nm

    Get PDF
    The development of photomedical modalities for diagnostics and treatment has created a need for knowledge of the optical properties of the targeted biological tissues. These properties are essential to plan certain procedures, since they determine the light absorption, propagation and penetration in tissues. One way to measure these properties is based on diffuse reflectance spectroscopy (DRS). DRS can provide light absorption and scattering coefficients for each wavelength through a non-invasive, fast and in situ interrogation, and thereby tissue biochemical information. In this study, reflectance measurements of ex vivo mice organs were investigated in a wavelength range between 350 and 1860 nm. To the best of our knowledge, this range is broader than previous studies reported in the literature and is useful to study additional chromophores with absorption in the extended wavelength range. Also, it may provide a more accurate concentration of tissue chromophores when fitting the reflectance spectrum in this extended range. In order to extract these concentrations, optical properties were calculated in a wide spectral range through a fitting routine based on an inverse Monte-Carlo look-up table model. Measurements variability was assessed by calculating the Pearson correlation coefficients between each pair of measured spectra of the same type of organ

    Investigation of lung volume measurements in neonates using gas in scattering media absorption spectroscopy

    Get PDF
    We perform phantom and numerical studies of the changes in molecular oxygen and water vapor spectroscopic signals, showing the potential of measuring pulmonary volume changes with GASMAS technique in neonates

    Miniaturized, multi-spectral optics for tissue differentiation

    Get PDF
    Identification of tumour margins during resection of the brain is critical for improving the post-operative outcomes. Present research aims to develop a miniaturized, optical system for simultaneous measurement of DRS and auto-fluorescence for brain tumour detection

    Investigation of micro-devices for neurobiological applications

    Get PDF
    The aim of this project is to integrate neuronal cell culture with commercial or in-house built micro-electrode arrays and MEMS devices. The resulting device is intended to support neuronal cell culture on its surface, expose specific portions of a neuronal population to different environments using microfluidic gradients and stimulate/record neuronal electrical activity using micro-electrode arrays. Additionally, through integration of chemical surface patterning, such device can be used to build neuronal cell networks of specific size, conformation and composition. The design of this device takes inspiration from the nervous system because its development and regeneration are heavily influenced by surface chemistry and fluidic gradients. Hence, this device is intended to be a step forward in neuroscience research because it utilizes similar concepts to those found in nature. The large part of this research revolved around solving technical issues associated with integration of biology, surface chemistry, electrophysiology and microfluidics. Commercially available microelectrode arrays (MEAs) are mechanically and chemically brittle making them unsuitable for certain surface modification and micro-fluidic integration techniques described in the literature. In order to successfully integrate all the aspects into one device, some techniques were heavily modified to ensure that their effects on MEA were minimal. In terms of experimental work, this thesis consists of 3 parts. The first part dealt with characterization and optimization of surface patterning and micro-fluidic perfusion. Through extensive image analysis, the optimal conditions required for micro-contact printing and micro-fluidic perfusion were determined. The second part used a number of optimized techniques and successfully applied these to culturing patterned neural cells on a range of substrates including: Pyrex, cyclo-olefin and SiN coated Pyrex. The second part also described culturing neurons on MEAs and recording electrophysiological activity. The third part of the thesis described integration of MEAs with patterned neuronal culture and microfluidic devices. Although integration of all methodologies proved difficult, a large amount of data relating to biocompatibility, neuronal patterning, electrophysiology and integration was collected. Original solutions were successfully applied to solve a number of issues relating to consistency of micro printing and microfluidic integration leading to successful integration of techniques and device components
    corecore