20 research outputs found

    Integrated Epigenetics of Human Breast Cancer: Synoptic Investigation of Targeted Genes, MicroRNAs and Proteins upon Demethylation Treatment

    Get PDF
    The contribution of aberrant DNA methylation in silencing of tumor suppressor genes (TSGs) and microRNAs has been investigated. Since these epigenetic alterations are reversible, it became of interest to determine the effects of the 5-aza-2'-deoxycytidine (DAC) demethylation therapy in breast cancer at different molecular levels

    Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

    Get PDF
    Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise. © 2015

    Response

    No full text

    Quantitative proteome analysis in cardiovascular physiology and pathology : I. Data processing

    No full text
    Methodological evaluation of the proteomic analysis of cardiovascular-tissue material has been performed with a special emphasis on establishing examinations that allow reliable quantitative analysis of silver-stained readouts. Reliability, reproducibility, robustness and linearity were addressed and clarified. In addition, several types of normalization procedures were evaluated and new approaches are proposed. It has been found that the silver-stained readout offers a convenient approach for quantitation if a linear range for gel loading is defined. In addition, a broad range of a 10-fold input (loading 20-200 microg per gel) fulfills the linearity criteria, although at the lowest input (20 microg) a portion of protein species will remain undetected. The method is reliable and reproducible within a range of 65-200 microg input. The normalization procedure using the sum of all spot intensities from a silver-stained 2D pattern has been shown to be less reliable than other approaches, namely, normalization through median or through involvement of interquartile range. A special refinement of the normalization through virtual segmentation of pattern, and calculation of normalization factor for each stratum provides highly satisfactory results. The presented results not only provide evidence for the usefulness of silver-stained gels for quantitative evaluation, but they are directly applicable to the research endeavor of monitoring alterations in cardiovascular pathophysiology

    Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data

    No full text
    International audienceThe first national product of Surface Water Dynamics in France (SWDF) is generated on a monthly temporal scale and 10-m spatial scale using an automatic rule-based superpixel (RBSP) approach. The current surface water dynamic products from high resolution (HR) multispectral satellite imagery are typically analyzed to determine the annual trend and related seasonal variability. Annual and seasonal time series analyses may fail to detect the intra-annual variations of water bodies. Sentinel-2 allows us to investigate water resources based on both spatial and temporal high-resolution analyses. We propose a new automatic RBSP approach on the Google Earth Engine platform. The RBSP method employs combined spectral indices and superpixel techniques to delineate the surface water extent; this approach avoids the need for training data and benefits large-scale, dynamic and automatic monitoring. We used the proposed RBSP method to process Sentinel-2 monthly composite images covering a two-year period and generate the monthly surface water extent at the national scale, i.e., over France. Annual occurrence maps were further obtained based on the pixel frequency in monthly water maps. The monthly dynamics provided in SWDF products are evaluated by HR satellite-derived water masks at the national scale (JRC GSW monthly water history) and at local scales (over two lakes, i.e., Lake Der-Chantecoq and Lake Orient, and 200 random sampling points). The monthly trends between SWDF and GSW were similar, with a coefficient of 0.94. The confusion matrix-based metrics based on the sample points were 0.885 (producer's accuracy), 0.963 (user's accuracy), 0.932 (overall accuracy) and 0.865 (Matthews correlation coefficient). The annual surface water extents (i.e., permanent and maximum) are validated by two HR satellite image-based water maps and an official database at the national scale and small water bodies (ponds) at the local scale at Loir-et-Cher. The results show that the SWDF results are closely correlated to the previous annual water extents, with a coefficient >0.950. The SWDF results are further validated for large rivers and lakes, with extraction rates of 0.929 and 0.802, respectively. Also, SWDF exhibits superiority to GSW in small water body extraction (taking 2498 ponds in Loir-et-Cher as example), with an extraction rate improved by approximately 20%. Thus, the SWDF method can be used to study interannual, seasonal and monthly variations in surface water systems. The monthly dynamic maps of SWDF improved the degree of land surface coverage by 25% of France on average compared with GSW, which is the only product that provides monthly dynamics. Further harmonization of Sentinel-2 and Landsat 8 and the introduction of enhanced cloud detection algorithm can fill some gaps of no-data regions

    Impact of freezing/thawing procedures on the post-thaw viability of cryopreserved human saphenous vein conduits

    Get PDF
    BACKGROUND: Cryopreserved human blood vessels are important tools in reconstructive surgery. However, patency of frozen/thawed conduits depends largely on the freezing/thawing procedures employed. METHODS: Changes in tone were recorded on rings from human saphenous vein (SV) and used to quantify the degree of cryoinjury after different periods of exposure at room temperature to the cryomedium (Krebs-Henseleit solution containing 1.8M dimethyl sulfoxide and 0.1M sucrose) and after different cooling speeds and thawing rates following storage at -196 degrees C. RESULTS: Without freezing, exposure of SV to the cryomedium for up to 240 min did not modify contractile responses to noradrenaline (NA). Pre-freezing exposure to the cryomedium for 10-120 min attenuated significantly post-thaw maximal contractile responses to NA, endothelin-1 (ET-1) and potassium chloride (KCl) by 30-44%. Exposure for 240 min attenuated post-thaw contractile responses to all tested agents markedly by 62-67%. Optimal post-thaw contractile activity was obtained with SV frozen at about -1.2 degrees C/min and thawed slowly at about 15 degrees C/min. In these SV maximal contractile responses to NA, ET-1 and KCl amounted to 66%, 70% and 60% of that produced by unfrozen controls. Following cryostorage of veins for up to 10 years the responsiveness of vascular smooth muscle to NA was well maintained. CONCLUSION: Cryopreservation allows long-term banking of viable human SV with only minor loss in contractility

    Simultaneous isolation of DNA, RNA, and proteins for genetic, epigenetic, transcriptomic, and proteomic analysis

    No full text
    Analysis of DNA, RNA, and proteins for downstream genetic, epigenetic, transcriptomic, and proteomic analysis holds an important place in the field of medical care and life science. This is often hampered by the limited availability of sample material. For this reason, there exists an increasing interest for simultaneous isolation of DNA, RNA and proteins from a single sample aliquot. Several kit-systems allowing such a procedure have been introduced to the market. We present an approach using the AllPrep method for simultaneous isolation of DNA, RNA and proteins from several human specimens, such as whole blood, buffy coat, serum, plasma and tissue samples. The quantification and qualification of the isolated molecular species were assessed by different downstream methods: NanoDrop for measuring concentration and purity of all molecular species; DNA and RNA LabChip for fractionation analysis of nucleic acids; quantitative PCR for quantification analysis of DNA and RNA; thymidine-specific cleavage mass array on MALDI-TOF silico-chip for epigenetic analysis; Protein LabChip and two-dimensional (2D) gel electrophoresis for proteomic analysis. With our modified method, we can simultaneously isolate DNA, RNA and/or proteins from one single sample aliquot. We could overcome to some method limitations like low quality or DNA fragmentation using reamplification strategy for performing high-throughput downstream assays. Fast and easy performance of the procedure makes this method interesting for all fields of downstream analysis, especially when using limited sample resources. The cost-effectiveness of the procedure when material is abundantly available has not been addressed. This methodological improvement enables to execute such experiments that were not performable with standard procedure, and ensures reproducible outcome

    Effects of the novel polymer gel LeGoo on human internal thoracic arteries

    No full text
    Established hemostatic devices can injure vessel wall integrity. LeGoo (Pluromed, Woburn, MA), a novel poloxamer gel with reverse thermosensitive properties, is a new device for temporary occlusion of blood vessels. The present study investigated the effects of LeGoo on vascular function and morphology

    Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors

    No full text
    Conventional tissue engineering strategies often rely on the use of a single progenitor cell source to engineer in vitro biological models; however, multi-cellular environments can better resemble the complexity of native tissues. Previous described co-culture models used skeletal myoblasts, as parenchymal cell source, and mesenchymal or endothelial cells, as stromal component. Here we propose instead the use of adipose tissue-derived stromal vascular fraction cells, which include both mesenchymal and endothelial cells, to better resemble the native stroma. Percentage of serum supplementation is one of the crucial parameters to steer skeletal myoblasts towards either proliferation (20%) or differentiation (5%) in two-dimensional culture conditions. On the contrary, three-dimensional skeletal myoblast culture often simply adopts the serum content used in monolayer, without taking into account the new cell environment. When considering 3D cultures of mm-thick engineered tissues, homogeneous and sufficient oxygen supply is paramount to avoid formation of necrotic cores. Perfusion-based bioreactor culture can significantly improve the oxygen access to the cells, enhancing the viability and the contractility of the engineered tissues. In this study, we first investigated the influence of different serum supplementations on the skeletal myoblast ability to proliferate and differentiate during three-dimensional perfusion-based culture. We tested percentages of serum promoting monolayer skeletal myoblast- proliferation (20%) and differentiation (5%) and suitable for stromal cell culture (10%) with a view to identify the most suitable condition for the subsequent co-culture. The 10% serum medium composition resulted in the highest number of mature myotubes and construct functionality. Co-culture with stromal vascular fraction cells at 10% serum also supported the skeletal myoblast differentiation and maturation , hence providing a functional engineered 3D muscle model that resembles the native multi-cellular environment. This article is protected by copyright. All rights reserve

    Rapamycin impairs endothelial cell function in human internal thoracic arteries.

    Get PDF
    BACKGROUND Definitive fate of the coronary endothelium after implantation of a drug-eluting stent remains unclear, but evidence has accumulated that treatment with rapamycin-eluting stents impairs endothelial function in human coronary arteries. The aim of our study was to demonstrate this phenomenon on functional, morphological and biochemical level in human internal thoracic arteries (ITA) serving as coronary artery model. METHODS After exposure to rapamycin for 20 h, functional activity of ITA rings was investigated using the organ bath technique. Morphological analysis was performed by scanning electron microscopy and evaluated by two independent observers in blinded fashion. For measurement of endothelial nitric oxide synthase (eNOS) release, mammalian target of rapamycin (mTOR) and protein kinase B (PKB) (Akt) activation, Western blotting on human mammary epithelial cells-1 and on ITA homogenates was performed. RESULTS Comparison of the acetylcholine-induced relaxation revealed a significant concentration-dependent decrease to 66 ± 7 % and 36 ± 7 % (mean ± SEM) after 20-h incubation with 1 and 10 μM rapamycin. Electron microscopic evaluation of the endothelial layer showed no differences between controls and samples exposed to 10 μM rapamycin. Western blots after 20-h incubation with rapamycin (10 nM-1 μM) revealed a significant and concentration-dependent reduction of p (Ser 1177)-eNOS (down to 38 ± 8 %) in human mammary epithelial cells (Hmec)-1. Furthermore, 1 μM rapamycin significantly reduced activation of p (Ser2481)-mTOR (58 ± 11 %), p (Ser2481)-mTOR (23 ± 4 %) and p (Ser473)-Akt (38 ± 6 %) in ITA homogenates leaving Akt protein levels unchanged. CONCLUSIONS The present data suggests that 20-h exposure of ITA rings to rapamycin reduces endothelium-mediated relaxation through down-regulation of Akt-phosphorylation via the mTOR signalling axis within the ITA tissue without injuring the endothelial cell layer
    corecore