47 research outputs found

    ACAP-A/B Are ArfGAP Homologs in Dictyostelium Involved in Sporulation but Not in Chemotaxis

    Get PDF
    Arfs and Arf GTPase-activating proteins (ArfGAPs) are regulators of membrane trafficking and actin dynamics in mammalian cells. In this study, we identified a primordial Arf, ArfA, and two ArfGAPs (ACAP-A/B) containing BAR, PH, ArfGAP and Ankyrin repeat domains in the eukaryote Dictyostelium discoideum. In vitro, ArfA has similar nucleotide binding properties as mammalian Arfs and, with GTP bound, is a substrate for ACAP-A and B. We also investigated the physiological functions of ACAP-A/B by characterizing cells lacking both ACAP-A and B. Although ACAP-A/B knockout cells showed no defects in cell growth, migration or chemotaxis, they exhibited abnormal actin protrusions and ∼50% reduction in spore yield. We conclude that while ACAP-A/B have a conserved biochemical mechanism and effect on actin organization, their role in migration is not conserved. The absence of an effect on Dictyostelium migration may be due to a specific requirement for ACAPs in mesenchymal migration, which is observed in epithelial cancer cells where most studies of mammalian ArfGAPs were performed

    Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly

    Get PDF
    The chaperone Hsc70 drives the clathrin assembly–disassembly cycle forward by stimulating dissociation of a clathrin lattice. A J-domain containing co-chaperone, auxilin, associates with a freshly budded clathrin-coated vesicle, or with an in vitro assembled clathrin coat, and recruits Hsc70 to its specific heavy-chain-binding site. We have determined by electron cryomicroscopy (cryoEM), at about 11 Å resolution, the structure of a clathrin coat (in the D6-barrel form) with specifically bound Hsc70 and auxilin. The Hsc70 binds a previously analysed site near the C-terminus of the heavy chain, with a stoichiometry of about one per three-fold vertex. Its binding is accompanied by a distortion of the clathrin lattice, detected by a change in the axial ratio of the D6 barrel. We propose that when Hsc70, recruited to a position close to its target by the auxilin J-domain, splits ATP, it clamps firmly onto its heavy-chain site and locks in place a transient fluctuation. Accumulation of the local strain thus imposed at multiple vertices can then lead to disassembly

    Mutations that affect the ability of the vnd/NK-2 homeoprotein to regulate gene expression: Transgenic alterations and tertiary structure

    No full text
    The importance in downstream target regulation of tertiary structure and DNA binding specificity of the protein encoded by the vnd/NK-2 homeobox gene is analyzed. The ectopic expression patterns of WT and four mutant vnd/NK-2 genes are analyzed together with expression of two downstream target genes, ind and msh, which are down-regulated by vnd/NK-2. Three mutants are deletions of conserved regions (i.e., tinman motif, acidic motif, and NK-2 box), and the fourth, Y54M vnd/NK-2, corresponds to a single amino acid residue replacement in the homeodomain. Of the four ectopically expressed mutant genes examined, only the Y54M mutation inactivates the ability of the vnd/NK-2 homeodomain protein to repress ind and msh. The acidic motif deletion mutant slightly reduced the ability of the protein to repress ind and msh. By contrast, both tinman and NK-2 box deletion mutants behaved as functional vnd/NK-2 genes in their ability to repress ind and msh. The NMR-determined tertiary structures of the Y54M vnd/NK-2 homeodomain, both free and bound to DNA, are compared with the WT analog. The only structural difference observed for the mutant homeodomain is in the complex with DNA and involved closer interaction of the methionine-54 with A2, rather than with C3 of the (−) strand of the DNA. This subtle change in the homeodomain–DNA complex resulted in modifications of binding affinities to DNA. These changes resulting from a single amino acid residue replacement constitute the molecular basis for the phenotypic alterations observed on ectopic expression of the Y54M vnd/NK-2 gene during embryogenesis
    corecore