312 research outputs found

    Experimental set-up for detecting blood pressure, heart rate, and lymphocyte redistribution in the running rat

    Get PDF
    An experimental set--up for detecting lymphocyte redistribution blood pressureand heart rate in the running rat is presented.The design is based 011 caterisation of the carotid anery which previously has been described. The design offers direct access to the blood stream making it possible to examine different cells and biochemical parameters.Furthermore, eontinnusly monitorering of blood pressure and heart rate both at rest and during exercise is described

    Genetic versus Non-Genetic Regulation of miR-103, miR-143 and miR-483-3p Expression in Adipose Tissue and Their Metabolic Implications-A Twin Study.

    Get PDF
    Murine models suggest that the microRNAs miR-103 and miR-143 may play central roles in the regulation of subcutaneous adipose tissue (SAT) and development of type 2 diabetes (T2D). The microRNA miR-483-3p may reduce adipose tissue expandability and cause ectopic lipid accumulation, insulin resistance and T2D. We aimed to explore the genetic and non-genetic factors that regulate these microRNAs in human SAT, and to investigate their impact on metabolism in humans. Levels of miR-103, miR-143 and miR-483-3p were measured in SAT biopsies from 244 elderly monozygotic and dizygotic twins using real-time PCR. Heritability estimates were calculated and multiple regression analyses were performed to study associations between these microRNAs and measures of metabolism, as well as between these microRNAs and possible regulating factors. We found that increased BMI was associated with increased miR-103 expression levels. In addition, the miR-103 levels were positively associated with 2 h plasma glucose levels and hemoglobin A1c independently of BMI. Heritability estimates for all three microRNAs were low. In conclusion, the expression levels of miR-103, miR-143 and miR-483-3p in adipose tissue are primarily influenced by non-genetic factors, and miR-103 may be involved in the development of adiposity and control of glucose metabolism in humans

    Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth

    Get PDF
    OBJECTIVE: Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight. RESEARCH DESIGN AND METHODS: We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring. RESULTS: We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11-31], P = 2 x 10(-5), and 14 g [4-23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39-120) lighter at birth than the 8% carrying none (P(trend) = 5 x 10(-7)). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus. CONCLUSIONS: Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype

    Regulation and Function of FTO mRNA Expression in Human Skeletal Muscle and Subcutaneous Adipose Tissue

    Get PDF
    OBJECTIVE-Common variants in FTO (the fat mass- and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and nongenetic regulation of FTO mRNA in skeletal muscle and adipose tissue and their influence on in vivo glucose and fat metabolism. RESEARCH DESIGN AND METHODS-The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years) and elderly (58-66 years) nondiabetic twins examined by a hyperinsulinemic-euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n = 226) and skeletal muscle biopsies (n = 158). RESULTS-Heritability of FTO expression in both tissues was low, and FTO expression was not influenced by FTO rs9939609 genotype. FTO mRNA expression in skeletal muscle was regulated by age and sex, whereas age and BMI were predictors of adipose tissue FTO mRNA expression. FTO mRNA expression in adipose tissue was associated with an atherogenic lipid profile. In skeletal muscle, FTO mRNA expression was negatively associated to fat and positively to glucose oxidation rates as well as positively correlated with expression of genes involved in oxidative phosphorylation including PGC1 alpha. CONCLUSIONS-The heritability of FTO expression in adipose tissue and skeletal muscle is low and not influenced by obesity-associated FTO genotype. The age-dependent decline in FTO expression is associated with peripheral defects of glucose and fat metabolism. Diabetes 58:2402-2408, 200

    Adiposity, Dysmetabolic Traits, and Earlier Onset of Female Puberty in Adolescent Offspring of Women With Gestational Diabetes Mellitus: A Clinical Study Within the Danish National Birth Cohort

    Get PDF
    OBJECTIVE Offspring of pregnancies affected by gestational diabetes mellitus (GDM) are at increased risk of the development of type 2 diabetes. However, the extent to which these dysmetabolic traits may be due to offspring and/or maternal adiposity is unknown. We examined body composition and associated cardiometabolic traits in 561 9- to 16-year-old offspring of mothers with GDM and 597 control offspring. RESEARCH DESIGN AND METHODS We measured anthropometric characteristics; puberty status; blood pressure; and fasting glucose, insulin, C-peptide, and lipid levels; and conducted a DEXA scan in a subset of the cohort. Differences in the outcomes between offspring of mothers with GDM and control subjects were examined using linear and logistic regression models. RESULTS After adjustment for age and sex, offspring of mothers with GDM displayed higher weight, BMI, waist-to-hip ratio (WHR), systolic blood pressure, and resting heart rate and lower height. Offspring of mothers with GDM had higher total and abdominal fat percentages and lower muscle mass percentages, but these differences disappeared after correction for offspring BMI. The offspring of mothers with GDM displayed higher fasting plasma glucose, insulin, C-peptide, HOMA-insulin resistance (IR), and plasma triglyceride levels, whereas fasting plasma HDL cholesterol levels were decreased. Female offspring of mothers with GDM had an earlier onset of puberty than control offspring. Offspring of mothers with GDM had significantly higher BMI, WHR, fasting glucose, and HOMA-IR levels after adjustment for maternal prepregnancy BMI, and glucose and HOMA-IR remained elevated in the offspring of mothers with GDM after correction for both maternal and offspring BMIs. CONCLUSIONS In summary, adolescent offspring of women with GDM show increased adiposity, an adverse cardiometabolic profile, and earlier onset of puberty among girls. Increased fasting glucose and HOMA-IR levels among the offspring of mothers with GDM may be explained by the programming effects of hyperglycemia in pregnancy. </jats:sec

    Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: results from studies of twins with and without type 2 diabetes.

    Get PDF
    AIMS/HYPOTHESIS: We aimed to identify microRNAs (miRNAs) associated with type 2 diabetes and risk of developing the disease in skeletal muscle biopsies from phenotypically well-characterised twins. METHODS: We measured muscle miRNA levels in monozygotic (MZ) twins discordant for type 2 diabetes using arrays. Further investigations of selected miRNAs included target prediction, pathway analysis, silencing in cells and association analyses in a separate cohort of 164 non-diabetic MZ and dizygotic twins. The effects of elevated glucose and insulin levels on miRNA expression were examined, and the effect of low birthweight (LBW) was studied in rats. RESULTS: We identified 20 miRNAs that were downregulated in MZ twins with diabetes compared with their non-diabetic co-twins. Differences for members of the miR-15 family (miR-15b and miR-16) were the most statistically significant, and these miRNAs were predicted to influence insulin signalling. Indeed, miR-15b and miR-16 levels were associated with levels of key insulin signalling proteins, miR-15b was associated with the insulin receptor in non-diabetic twins and knockdown of miR-15b/miR-16 in myocytes changed the levels of insulin signalling proteins. LBW in twins and undernutrition during pregnancy in rats were, in contrast to overt type 2 diabetes, associated with increased expression of miR-15b and/or miR-16. Elevated glucose and insulin suppressed miR-16 expression in vitro. CONCLUSIONS: Type 2 diabetes is associated with non-genetic downregulation of several miRNAs in skeletal muscle including miR-15b and miR-16, potentially targeting insulin signalling. The paradoxical findings in twins with overt diabetes and twins at increased risk of the disease underscore the complexity of the regulation of muscle insulin signalling in glucose homeostasis.JB-J was supported by a grant from the Danish PhD School for Molecular Metabolism. The study was supported by grants from the Danish Medical Research Council, the Danish Strategic Research Council. The Novo Nordisk Foundation, the Danish Ministry of Science, Technology and Innovation. DSF-T was supported by the Biotechnology and Biological Sciences Research Council project grant BB/F-15364/1. SEO is a British Heart Foundation Senior Fellow (FS/09/029/27902).This is the final version of the article. It was first published by Springer at http://link.springer.com/article/10.1007%2Fs00125-014-3434-

    The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    Get PDF
    The original publication is available at http://www.jnrbm.com/content/10/1/12Includes bibliographyAbstract Background The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response. Results The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. Conclusions Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmiaPeer Reviewe
    corecore