38 research outputs found
Competition between Electromagnetically Induced Transparency and Raman Processes
We present a theoretical formulation of competition among electromagnetically
induced transparency (EIT) and Raman processes. The latter become important
when the medium can no longer be considered to be dilute. Unlike the standard
formulation of EIT, we consider all fields applied and generated as interacting
with both the transitions of the scheme. We solve Maxwell equations
for the net generated field using a fast-Fourier-transform technique and obtain
predictions for the probe, control and Raman fields. We show how the intensity
of the probe field is depleted at higher atomic number densities due to the
build up of multiple Raman fields.Comment: 3.5 pages, 7 figure
Observation of sub-natural linewidths for cold atoms in a magneto-optic trap
We have studied the absorption of a weak probe beam through cold rubidium
atoms in a magneto-optic trap. The absorption spectrum shows two peaks with the
smaller peak having linewidth as small as 28% of the natural linewidth. The
modification happens because the laser beams used for trapping also drive the
atoms coherently between the ground and excited states. This creates
``dressed'' states whose energies are shifted depending on the strength of the
drive. Linewidth narrowing occurs due to quantum coherence between the dressed
states. The separation of the states increases with laser intensity and
detuning, as expected from this model.Comment: 8 pages, 4 figure
A Single Charged Quantum Dot in a Strong Optical Field: Absorption, Gain, and the AC Stark Effect
We investigate a singly-charged quantum dot under a strong optical driving
field by probing the system with a weak optical field. When the driving field
is detuned from the trion transition, the probe absorption spectrum is shifted
from the trion resonance as a consequence of the dynamic Stark effect.
Simultaneously, a gain sideband is created, resulting from the coherent energy
transfer between the optical fields through the quantum dot nonlinearity. As
the pump detuning is moved from red to blue, we map out the anticrossing of
these two spectral lines. The optical Bloch equations for a stationary
two-level atom can be used to describe the numerous spectral features seen in
this nano solid state system
Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius
We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in
the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite,
which we interpret as due to the presence of a transiting companion. We
describe the 3-colour CoRoT data and complementary ground-based observations
that support the planetary nature of the companion. Methods. We use CoRoT color
information, good angular resolution ground-based photometric observations in-
and out- of transit, adaptive optics imaging, near-infrared spectroscopy and
preliminary results from Radial Velocity measurements, to test the diluted
eclipsing binary scenarios. The parameters of the host star are derived from
optical spectra, which were then combined with the CoRoT light curve to derive
parameters of the companion. We examine carefully all conceivable cases of
false positives, and all tests performed support the planetary hypothesis.
Blends with separation larger than 0.40 arcsec or triple systems are almost
excluded with a 8 10-4 risk left. We conclude that, as far as we have been
exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which
we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/-
0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit
of 21 MEarth for the companion mass, supporting the finding.
CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language
corrections; version sent to the printer w few upgrade
Photonic quantum information processing: a review
Photonic quantum technologies represent a promising platform for several
applications, ranging from long-distance communications to the simulation of
complex phenomena. Indeed, the advantages offered by single photons do make
them the candidate of choice for carrying quantum information in a broad
variety of areas with a versatile approach. Furthermore, recent technological
advances are now enabling first concrete applications of photonic quantum
information processing. The goal of this manuscript is to provide the reader
with a comprehensive review of the state of the art in this active field, with
a due balance between theoretical, experimental and technological results. When
more convenient, we will present significant achievements in tables or in
schematic figures, in order to convey a global perspective of the several
horizons that fall under the name of photonic quantum information.Comment: 36 pages, 6 figures, 634 references. Updated version with minor
changes and extended bibliograph
Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius
Copyright © The European Southern Observatory (ESO)Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4×10−4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion.
Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios.
The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion.
Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40'' or triple systems are almost excluded with a 8 × 10−4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10−5 day and a radius of Rp = 1.68 ± 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding.
Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived