65 research outputs found

    Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis

    Get PDF
    The aim of this study was to investigate the expressions of Toll-like receptor (TLR) 2, TLR4, TLR9, and their correlations with the expression of cytokines that are associated with activation of CD4+ T cells and inflammation including interferon γ (IFNγ), interleukin 4 (IL4), interleukin 17 (IL17), and tumor necrosis factor α (TNFα) in muscle tissues of patients with dermatomyositis (DM) and polymyositis (PM). The expressions of TLR2, TLR4, TLR9, IFNγ, IL4, IL17, and TNFα were measured by real-time reverse transcription–polymerase chain reaction in muscle tissues from 14 patients with DM and PM (nine patients with DM, five patients with PM) and three controls. The expressions of TLR2, TLR4, and TLR9 were also localized with immunohistochemistry. The expression levels of TLR2, TLR4, TLR9, IFNγ, IL4, IL17, and TNFα were significantly high in patients with DM and PM compared with those in the controls, and the expression levels of TLR4 and TLR9 had significant positive correlations with the expressions of IFNγ, IL4, IL17, and TNFα. Immunohistochemistry showed that TLR2, TLR4, and TLR9 were expressed by infiltrating cells of perimysium in DM, whereas they were expressed by infiltrating cells of endomysium in PM. These results suggest that the involvement of TLR4 and TLR9 in immunopathogenesis of DM and PM might be connected with activation of CD4+ T cells

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    A Longitudinal, Integrated, Clinical, Histological and mRNA Profiling Study of Resistance Exercise in Myositis

    No full text
    Polymyositis and dermatomyositis are orphan, chronic skeletal muscle disorders characterized by weakness, infiltrations by mononuclear inflammatory cells, and fibrosis. Until recently, patients were advised to refrain from physical activity because of fears of exacerbation of muscle inflammation. However, recent studies have shown that moderate exercise training in combination with immunosuppressive drugs can improve muscle performance. Despite the positive effects of exercise training, the molecular mechanisms underlying the exercise-associated clinical improvements remain poorly understood. The present study was designed to define, at the molecular level, the effects of resistance exercise training on muscle performance and disease progression in myositis patients. We evaluated changes in muscle strength, histology and genome-wide mRNA profiles to determine the beneficial effects of exercise and determine the possible molecular changes associated with improved muscle performance. A total of 8 myositis patients underwent a 7-wk resistance exercise training program that resulted in improved muscle strength and increased maximal oxygen uptake (VO2max). Training also resulted in marked reductions in gene expression, reflecting reductions in proinflammatory and profibrotic gene networks, changes that were also accompanied by a reduction in tissue fibrosis. Consistent with the exercise-associated increase in VO2max, a subset of transcripts was associated with a shift toward oxidative metabolism. The changes in gene expression reported in the present study are in agreement with the performance improvements induced by exercise and suggest that resistance exercise training can induce a reduction in inflammation and fibrosis in skeletal muscle

    The metastasis promoting protein S100A4 is increased in idiopathic inflammatory myopathies

    Full text link
    Objectives. The S100A4 protein is known as a metastasis promoting factor; however, its involvement in non-malignant diseases such as RA and psoriasis has been recently described. The aim of this study was to investigate the expression and possible role of S100A4 in idiopathic inflammatory myopathies. Methods. S100A4 protein expression was detected by immunohistochemistry in muscle tissue from control individuals (n = 11) and patients with PM and DM (n = 8/6). IF staining was used to co-localize S100A4 with selected cells. Cytokine expression and protein synthesis in S100A4-treated cells were analysed by RT-PCR and ELISA. Results. S100A4 protein was significantly up-regulated in muscle tissue of patients with inflammatory myopathies compared with control individuals and was associated particularly with the presence of mononuclear infiltrates. Only few regenerating muscle fibres in PM/DM expressed S100A4. Then we analysed the effect of S100A4 on human myocytes and peripheral blood mononuclear cells (PBMCs). Although S100A4 did not affect myocytes, stimulation of PBMCs with S100A4 significantly induced the expression and synthesis of TNF-α, IL-1β and IL-6, but not of IFN-α. We showed that S100A4 is not directly involved in perforin/granzyme B-induced apoptosis and that it does not modulate the expression of Bax and Bcl2 mRNA in myocytes and PBMCs. Conclusion. Increased expression of S100A4 in inflamed muscle tissue highlights its potential role in the pathogenesis of inflammatory myopathies. S100A4 may act as a cytokine-like factor indirectly promoting muscle fibre damage by stimulating mononuclear cells to increase the synthesis of pro-inflammatory cytokines
    • …
    corecore