1,146 research outputs found
Infrared renormalons and analyticity structure in pQCD
Relation between the infrared renormalons, the Borel resummation
prescriptions, and the analyticity structure of Green functions in perturbative
QCD (pQCD) is investigated. A specific recently suggested Borel resummation
prescription resulted in the Principal Value and an additional power-suppressed
correction that is consistent with the Operator Product Expansion. Arguments
requiring the finiteness of the result for any power coefficient of the leading
infrared renormalon, and the consistency in the case of the absence of that
renormalon, require that this prescription be modified. The apparently most
natural modification leads to the result represented by the Principal Value.
The analytic structure of the amplitude in the complex coupling plane, obtained
in this way, is consistent with that obtained in the literature by other
methods.Comment: 6 pages, revtex4, 1 eps-figure; improved version - the paragraph
containing Eqs.(18) and (19) is new, as well as the next paragraph; the Title
modified; some references added; version to appear in Phys. Rev.
Pade-related resummations of the pressure of quark-gluon plasma by approximate inclusion of g**6-terms
We perform various resummations of the hot QCD pressure based on the actual
knowledge of the perturbation series which includes the g**6 ln(1/g) and part
of the g**6 terms. Resummations are performed separately for the short- and
long-distance parts. The g**6 term of the short-distance pressure is estimated
on the basis on the known UV cutoff dependence of the long-distance part. The
resummations are of the Pade and Borel-Pade type, using in addition the
(Pade-)resummed expression for the squared screening mass mE**2 and for the
EQCD coupling parameter gE**2. The resummed results depend weakly on the yet
unknown g**6 terms and on the the short-range renormalization scale, at all
temperatures. The dependence on the long-range renormalization scale is
appreciable at low temperatures T < 1 GeV. The resulting dependence of pressure
on temperature T is compatible with the results of the lattice calculations at
low T.Comment: 25 pages, 15 double figures, 4 single figures, revtex4; thoroughly
extended analysis; more figures; conclusions more clearly formulated; new
references added; title slightly changed; accepted for publication in
Phys.Rev.
Presence of asthma risk factors and environmental exposures related to upper respiratory infection-triggered wheezing in middle school-age children.
Viral respiratory infections and exposure to environmental constituents such as tobacco smoke are known or suspected to trigger wheezing/asthma exacerbations in children. However, few population-based data exist that examine the relationship between wheezing triggered by viral respiratory infections and environmental exposures. In this investigation we used population-based data to evaluate differences in exposures between symptomatic middle school-age children who did and did not report wheezing triggered by viral respiratory infections. As part of the North Carolina School Asthma Survey (NCSAS), a 66-question data instrument was used to collect information from children enrolled in North Carolina public middle schools during the 1999-2000 school year. Associations between exposures and upper respiratory infection-triggered wheezing (URI-TW) among symptomatic children were examined using adjusted prevalence odds ratios (PORs). Video methods developed for the International Study of Asthma and Allergies in Childhood were used to assess wheezing. Among the 33,534 NCSAS symptomatic participants, positive associations were observed between most exposures and URI-TW. Reported presence of all allergy variables (PORs ranging from 2.11 to 2.45) was more strongly associated with URI-TW than either smoking or other exposures. Presence of URI-TW was higher at increasing levels of tobacco smoke exposure, but no apparent dose-response effect was observed for other indoor air pollutants. URI-TW in middle school children is most associated with reported allergen sensitivity, relative to other asthma risk factors and environmental exposures. Data from this investigation may be useful in developing assessment, screening, and targeting strategies to improve asthma and wheezing management in children
One-Loop QCD Mass Effects in the Production of Polarized Bottom and Top Quarks
The analytic expressions for the production cross sections of polarized
bottom and top quarks in annihilation are explicitly derived at the
one-loop order of strong interactions. Chirality-violating mass effects will
reduce the longitudinal spin polarization for the light quark pairs by an
amount of , when one properly considers the massless limit for the final
quarks. Numerical estimates of longitudinal spin polarization effects in the
processes and are presented.Comment: 17 p. (5 figs available upon request), LaTeX, MZ-TH/93-30, RAL/93-81,
FTUV/93-4
High Salinity Effects on the Components of Relative Growth Rate in Rhodes Grass
Rhodes grass (Chloris gayana Kunth), is widely cultivated in the semiarid tropics and favored for its salt tolerance. Nevertheless, productivity decreases significantly under saline conditions, especially in tetraploid cultivars. The purpose of this work was to explore, in tetraploid cultivar Boma, the physiological causes for the observed salt-associated growth reduction. The effects of high salinity (200 mM NaCl) on the components of relative growth rate were analyzed in greenhouse experiments. An early reduction in leaf area expansion was observed, which later resulted in decreased dry matter accumulation. Plant leafiness was reduced by effects both on dry matter allocation to photosynthetic organs and, more significantly, on leaf surface expansion. This caused reductions in the number of tillers, and afterwards, stolons. Photosynthetic production was altered later than leaf area expansion, indicating, as has been seen in other species, that the main effect of salinity was a limitation of leaf growth
Septal Oxytocin Administration Impairs Peer Affiliation via V1a Receptors in Female Meadow Voles
The peptide hormone oxytocin (OT) plays an important role in social behaviors, including social bond formation. In different contexts, however, OT is also associated with aggression, social selectivity, and reduced affiliation. Female meadow voles form social preferences for familiar same-sex peers under short, winter-like day lengths in the laboratory, and provide a means of studying affiliation outside the context of reproductive pair bonds. Multiple lines of evidence suggest that the actions of OT in the lateral septum (LS) may decrease affiliative behavior, including greater density of OT receptors in the LS of meadow voles that huddle less. We infused OT into the LS of female meadow voles immediately prior to cohabitation with a social partner to determine its effects on partner preference formation. OT prevented the formation of preferences for the partner female. Co-administration of OT with a specific OT receptor antagonist did not reverse the effect, but co-administration of OT with a specific vasopressin 1a receptor (V1aR) antagonist did, indicating that OT in the LS likely acted through V1aRs to decrease partner preference. Receptor autoradiography revealed dense V1aR binding in the LS of female meadow voles. These results suggest that the LS is a brain region that may be responsible for inhibitory effects of OT administration on affiliation, which will be important to consider in therapeutic administrations of OT
Scale-independent mixing angles
A radiatively-corrected mixing angle has to be independent of the choice of
renormalization scale to be a physical observable. At one-loop in MS-bar, this
only occurs for a particular value, p*, of the external momentum in the
two-point functions used to define the mixing angle: p*^2=(M1^2+M2^2)/2, where
M1, M2 are the physical masses of the two mixed particles. We examine two
important applications of this to the Minimal Supersymmetric Standard Model:
the mixing angle for a) neutral Higgs bosons and b) stops. We find that this
choice of external momentum improves the scale independence (and therefore
provides a more reliable determination) of these mixing angles.Comment: 14 pages, 11 ps figures Version to appear in PR
Non-Abelian Dipole Radiation and the Heavy Quark Expansion
Dipole radiation in QCD is derived to the second order in . A
power-like evolution of the spin-singlet heavy quark operators is obtained to
the same accuracy. In particular, relation between a
short-distance low-scale running heavy quark mass and the \barMS mass is
given. We discuss the properties of the effective QCD coupling \aw(E) which
governs the dipole radiation. This coupling is advantageous for heavy quark
physics.Comment: 12 pages, Late
Analytic Approach to Perturbative QCD
The two-loop invariant (running) coupling of QCD is written in terms of the
Lambert W function. The analyticity structure of the coupling in the complex
Q^2-plane is established. The corresponding analytic coupling is reconstructed
via a dispersion relation. We also consider some other approximations to the
QCD beta-function, when the corresponding couplings are solved in terms of the
Lambert function. The Landau gauge gluon propagator has been considered in the
renormalization group invariant analytic approach (IAA). It is shown that there
is a nonperturbative ambiguity in determination of the anomalous dimension
function of the gluon field. Several analytic solutions for the propagator at
the one-loop order are constructed. Properties of the obtained analytical
solutions are discussed.Comment: Latex-file, 19 pages, 2 tables, 51 references, to be published in
Int. J. Mod. Phys.
Dynamical mass generation by source inversion: Calculating the mass gap of the Gross-Neveu model
We probe the U(N) Gross-Neveu model with a source-term . We
find an expression for the renormalization scheme and scale invariant source
, as a function of the generated mass gap. The expansion of this
function is organized in such a way that all scheme and scale dependence is
reduced to one single parameter d. We get a non-perturbative mass gap as the
solution of . In one loop we find that any physical choice for d
gives good results for high values of N. In two loops we can determine d
self-consistently by the principle of minimal sensitivity and find remarkably
accurate results for N>2.Comment: 13 pages, 3 figures, added referenc
- …