91 research outputs found
Impaired Chromatin Remodelling at STAT1-Regulated Promoters Leads to Global Unresponsiveness of Toxoplasma gondii-Infected Macrophages to IFN-γ
Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites' replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors
Actin: its cumbersome pilgrimage through cellular compartments
In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin
A Protein Inventory of Human Ribosome Biogenesis Reveals an Essential Function of Exportin 5 in 60S Subunit Export
A systematic search for human ribosome biogenesis factors shows conservation of many aspects of eukaryotic ribosome synthesis with the well-studied process in yeast and identifies an export route of 60S subunits that is specific for higher eukaryotes
Gene and genon concept: coding versus regulation: A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology
We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon
Antineoplastic Drugs as a Potential Risk Factor in Occupational Settings: Mechanisms of Action at the Cell Level, Genotoxic Effects, and Their Detection Using Different Biomarkers
U članku je prikazana osnovna podjela antineoplastičnih lijekova prema mehanizmima djelovanja na razini stanice. Objašnjeni su mehanizmi genotoksičnosti najvažnijih vrsta lijekova koji se primjenjuju u okviru uobičajenih protokola za liječenje zloćudnih novotvorina. Navedena je važeća klasifi kacija antineoplastika prema kancerogenom potencijalu, podaci o mutagenom potencijalu te je prikazana njihova podjela u skladu s anatomsko-terapijsko-kemijskim sustavom klasifi kacije. Sustavno su prikazani najvažniji
rezultati svjetskih i hrvatskih istraživanja na populacijama radnika izloženih antineoplasticima, provedenih u razdoblju 1980.-2009. s pomoću četiri najčešće primjenjivane metode: analize izmjena sestrinskih kromatida, analize kromosomskih aberacija, mikronukleus-testa i komet-testa. Objašnjena su osnovna
načela navedenih metoda te raspravljene njihove prednosti i nedostaci. Biološki pokazatelji daju važne podatke o individualnoj osjetljivosti profesionalno izloženih ispitanika koji mogu poslužiti unaprjeđenju postojećih uvjeta rada i upravljanju rizicima pri izloženosti genotoksičnim agensima. Na osnovi prednosti i nedostataka citogenetičkih metoda zaključeno je da je mikronukleus-test, koji podjednako uspješno dokazuje klastogene i aneugene učinke, jedna od najboljih metoda dostupnih za otkrivanje štetnih djelovanja antineoplastičnih lijekova koji su u aktivnoj primjeni.This article brings an overview of the mechanisms of action of antineoplastic drugs used in the clinical setting. It also describes the genotoxic potentials of the most important classes of antineoplastic drugs involved in standard chemotherapy protocols. Classifi cation of antineoplastic drugs according to the IARC monographs on the evaluation of carcinogenic risks to humans is accompanied by data on their mutagenicity and the most recent updates in the Anatomical Therapeutic Chemical (ATC) Classifi cation System. We report the main fi ndings of biomonitoring studies that were conducted in exposed healthcare workers all over the world between 1980 and 2009 using four biomarkers: sister chromatid exchanges,
chromosome aberrations, micronuclei. and the comet assay. The methods are briefl y explained and their advantages and disadvantages discussed. Biomarkers provide important information on individual genome sensitivity, which eventually might help to improve current working practices and to manage the risks
related with exposure to genotoxic agents. Taking into consideration all known advantages and drawbacks of the existing cytogenetic methods, the micronucleus assay, which is able to detect both clastogenic and aneugenic action, is the most suitable biomarker for assessing harmful effects of antineoplastic drugs currently used in health care
- …