805 research outputs found
Co-infection of the four major Plasmodium species: effects on densities and gametocyte carriage
BACKGROUND: Co-infection of the four major species of human malaria parasite Plasmodium falciparum (Pf), P. vivax (Pv), P. malariae (Pm), and P. ovale sp. (Po) is regularly observed, but there is limited understanding of between-species interactions. In particular, little is known about the effects of multiple Plasmodium species co-infections on gametocyte production. METHODS: We developed molecular assays for detecting asexual and gametocyte stages of Pf, Pv, Pm, and Po. This is the first description of molecular diagnostics for Pm and Po gametocytes. These assays were implemented in a unique epidemiological setting in Papua New Guinea with sympatric transmission of all four Plasmodium species permitting a comprehensive investigation of species interactions. FINDINGS: The observed frequency of Pf-Pv co-infection for asexual parasites (14.7%) was higher than expected from individual prevalence rates (23.8%Pf x 47.4%Pv = 11.3%). The observed frequency of co-infection with Pf and Pv gametocytes (4.6%) was higher than expected from individual prevalence rates (13.1%Pf x 28.2%Pv = 3.7%). The excess risk of co-infection was 1.38 (95% confidence interval (CI): 1.09, 1.67) for all parasites and 1.37 (95% CI: 0.95, 1.79) for gametocytes. This excess co-infection risk was partially attributable to malaria infections clustering in some villages. Pf-Pv-Pm triple infections were four times more frequent than expected by chance alone, which could not be fully explained by infections clustering in highly exposed individuals. The effect of co-infection on parasite density was analyzed by systematic comparison of all pairwise interactions. This revealed a significant 6.57-fold increase of Pm density when co-infected with Pf. Pm gametocytemia also increased with Pf co-infection. CONCLUSIONS: Heterogeneity in exposure to mosquitoes is a key epidemiological driver of Plasmodium co-infection. Among the four co-circulating parasites, Pm benefitted most from co-infection with other species. Beyond this, no general prevailing pattern of suppression or facilitation was identified in pairwise analysis of gametocytemia and parasitemia of the four species. TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov, Trial ID: NCT02143934
Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking
Background Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. Methodology/Principal Findings Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2–3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. Conclusions/Significance These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation
Temperature dependence of the upper critical field of an anisotropic singlet superconductivity in a square lattice tight-binding model in parallel magnetic fields
Upper critical field parallel to the conducting layer is studied in
anisotropic type-II superconductors on square lattices. We assume enough
separation of the adjacent layers, for which the orbital pair-breaking effect
is suppressed for exactly aligned parallel magnetic field. In particular, we
examine the temperature dependence of the critical field H_c(T) of the
superconductivity including the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF)
state, in which the Cooper pairs have non-zero center-of-mass momentum q. In
the system with the cylindrically symmetric Fermi-surface, it is known that
H_c(T) of the d-wave FFLO state exhibits a kink at a low temperature due to a
change of the direction of q in contrast to observations in organic
superconductors. It is shown that the kink disappears when the Fermi-surface is
anisotropic to some extent, since the direction of q is locked in an optimum
direction independent of the temperature.Comment: 5 pages, 5 figures, revtex.sty, submitted to J.Phys.Soc.Jp
Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor
We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a
type-II two-dimensional superconductor within a self-consistent Gor'kov
perturbation scheme. Assuming that the order parameter forms a vortex lattice
we can calculate the expansion coefficients exactly to any order. We have
tested the results of the perturbation theory to fourth and eight order against
an exact numerical solution of the corresponding Bogoliubov-de Gennes
equations. The perturbation theory is found to describe the onset of
superconductivity well close to the transition point . Contrary to
earlier calculations by other authors we do not find that the perturbative
scheme predicts any maximum of the dHvA-oscillations below . Instead we
obtain a substantial damping of the magnetic oscillations in the mixed state as
compared to the normal state. We have examined the effect of an oscillatory
chemical potential due to particle conservation and the effect of a finite
Zeeman splitting. Furthermore we have investigated the recently debated issue
of a possibility of a sign change of the fundamental harmonic of the magnetic
oscillations. Our theory is compared with experiment and we have found good
agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004.
Several sections changed or added, including a section on the effect of spin
and the effect of a conserved number of particles. To be published in Phys.
Rev.
Metals in high magnetic field: a new universality class of Fermi liquids
Parquet equations, describing the competition between superconducting and
density-wave instabilities, are solved for a three-dimensional isotropic metal
in a high magnetic field when only the lowest Landau level is filled. In the
case of a repulsive interaction between electrons, a phase transition to the
density-wave state is found at finite temperature. In the opposite case of
attractive interaction, no phase transition is found. With decreasing
temperature , the effective vertex of interaction between electrons
renormalizes toward a one-dimensional limit in a self-similar way with the
characteristic length (transverse to the magnetic field) decreasing as
( is a cutoff). Correlation functions have
new forms, previously unknown for conventional one-dimensional or
three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included
Theory of de Haas-van Alphen Effect in Type-II Superconductors
Theory of quasiparticle spectra and the de Haas-van Alphen (dHvA) oscillation
in type-II superconductors are developed based on the Bogoliubov-de Gennes
equations for vortex-lattice states. As the pair potential grows through the
superconducting transition, each degenerate Landau level in the normal state
splits into quasiparticle bands in the magnetic Brillouin zone. This brings
Landau-level broadening, which in turn leads to the extra dHvA oscillation
damping in the vortex state. We perform extensive numerical calculations for
three-dimensional systems with various gap structures. It is thereby shown that
(i) this Landau-level broadening is directly connected with the average gap at
H=0 along each Fermi-surface orbit perpendicular to the field H; (ii) the extra
dHvA oscillation attenuation is caused by the broadening around each extremal
orbit. These results imply that the dHvA experiment can be a unique probe to
detect band- and/or angle-dependent gap amplitudes. We derive an analytic
expression for the extra damping based on the second-order perturbation with
respect to the pair potential for the Luttinger-Ward thermodynamic potential.
This formula reproduces all our numerical results excellently, and is used to
estimate band-specific gap amplitudes from available data on NbSe_2, Nb_3Sn,
and YNi_2B_2C. The obtained value for YNi_2B_2C is fairly different from the
one through a specific-heat measurement, indicating presence of gap anisotropy
in this material. C programs to solve the two-dimensional Bogoliubov-de Gennes
equations are available at http://phys.sci.hokudai.ac.jp/~kita/index-e.html .Comment: 16 pages, 11 figure
Magnetic-Field Variations of the Pair-Breaking Effects of Superconductivity in (TMTSF)2ClO4
We have studied the onset temperature of the superconductivity Tc_onset of
the organic superconductor (TMTSF)2ClO4, by precisely controlling the direction
of the magnetic field H. We compare the results of two samples with nearly the
same onset temperature but with different scattering relaxation time tau. We
revealed a complicated interplay of a variety of pair-breaking effects and
mechanisms that overcome these pair-breaking effects. In low fields, the linear
temperature dependences of the onset curves in the H-T phase diagrams are
governed by the orbital pair-breaking effect. The dips in the in-plane
field-angle phi dependence of Tc_onset, which were only observed in the
long-tau sample, provides definitive evidence that the field-induced
dimensional crossover enhances the superconductivity if the field direction is
more than about 19-degrees away from the a axis. In the high-field regime for
H//a, the upturn of the onset curve for the long-tau sample indicates a new
superconducting state that overcomes the Pauli pair-breaking effect but is
easily suppressed by impurity scatterings. The Pauli effect is also overcome
for H//b' by a realization of another state for which the maximum of
Tc_onset(phi) occurs in a direction different from the crystalline axes. The
effect on Tc_onset of tilting the applied field out of the conductive plane
suggests that the Pauli effect plays a significant role in determining
Tc_onset. The most plausible explanation of these results is that (TMTSF)2ClO4
is a singlet superconductor and exhibits Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) states in high fields.Comment: 12 pages, 10 figures. To be published in J. Phys. Soc. Jpn. (vol.77,
2008
Structure of the Fulde-Ferrell-Larkin-Ovchinnikov state in two-dimensional superconductors
Nonuniform superconducting state due to strong spin magnetism is studied in
two-dimensional type-II superconductors near the second order phase transition
line between the normal and the superconducting states. The optimum spatial
structure of the orderparameter is examined in systems with cylindrical
symmetric Fermi surfaces. It is found that states with two-dimensional
structures have lower free energies than the traditional one-dimensional
solutions, at low temperatures and high magnetic fields. For s-wave pairing,
triangular, square, hexagonal states are favored depending on the temperature,
while square states are favored at low temperatures for d-wave pairing. In
these states, orderparameters have two-dimensional structures such as square
and triangular lattices.Comment: 11 pages (LaTeX, revtex.sty), 3 figures; added reference
Crystalline Color Superconductivity
In any context in which color superconductivity arises in nature, it is
likely to involve pairing between species of quarks with differing chemical
potentials. For suitable values of the differences between chemical potentials,
Cooper pairs with nonzero total momentum are favored, as was first realized by
Larkin, Ovchinnikov, Fulde and Ferrell (LOFF). Condensates of this sort
spontaneously break translational and rotational invariance, leading to gaps
which vary periodically in a crystalline pattern. Unlike the original LOFF
state, these crystalline quark matter condensates include both spin zero and
spin one Cooper pairs. We explore the range of parameters for which crystalline
color superconductivity arises in the QCD phase diagram. If in some shell
within the quark matter core of a neutron star (or within a strange quark star)
the quark number densities are such that crystalline color superconductivity
arises, rotational vortices may be pinned in this shell, making it a locus for
glitch phenomena.Comment: 40 pages, LaTeX with eps figs. v2: New paragraph on Ginzburg-Landau
treatment of LOFF phase in section 5. References added. v3: Small changes
only. Version to appear in Phys. Rev.
- …