328 research outputs found

    The temperature dependence of FeRh's transport properties

    Get PDF
    The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T=TmT = T_m between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T≥0T \geq 0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of TmT_m, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement

    Pairwise stimulations of pathogen-sensing pathways predict immune responses to multi-adjuvant combinations

    Get PDF
    The immune system makes decisions in response to combinations of multiple microbial inputs. We do not understand the combinatorial logic governing how higher-order combinations of microbial signals shape immune responses. Here, using coculture experiments and statistical analyses, we discover a general property for the combinatorial sensing of microbial signals, whereby the effects of triplet combinations of microbial signals on immune responses can be predicted by combining the effects of single and pairs. Mechanistically, we find that singles and pairs dictate the information signaled by triplets in mouse and human DCs at the levels of transcription, chromatin, and protein secretion. We exploit this simplifying property to develop cell-based immunotherapies prepared with adjuvant combinations that trigger protective responses in mouse models of cancer. We conclude that the processing of multiple input signals by innate immune cells is governed by pairwise effects, which will inform the rationale combination of adjuvants to manipulate immunity

    The temperature dependence of FeRh’s transport properties

    Get PDF
    The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T = Tm between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T ≥ 0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of Tm, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement

    Alterations to nuclear architecture and genome behavior in senescent cells.

    Get PDF
    The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres

    Dynamic Chromatin Organization during Foregut Development Mediated by the Organ Selector Gene PHA-4/FoxA

    Get PDF
    Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development

    Intraoperative electrocortical stimulation of Brodman area 4: a 10-year analysis of 255 cases

    Get PDF
    BACKGROUND: Brain tumor surgery is limited by the risk of postoperative neurological deficits. Intraoperative neurophysiological examination techniques, which are based on the electrical excitability of the human brain cortex, are thus still indispensable for surgery in eloquent areas such as the primary motor cortex (Brodman Area 4). METHODS: This study analyzed the data obtained from a total of 255 cerebral interventions for lesions with direct contact to (121) or immediately adjacent to (134) Brodman Area 4 in order to optimize stimulation parameters and to search for direct correlation between intraoperative potential changes and specific surgical maneuvers when using monopolar cortex stimulation (MCS) for electrocortical mapping and continuous intraoperative neurophysiological monitoring. RESULTS: Compound muscle action potentials (CMAPs) were recorded from the thenar muscles and forearm flexors in accordance with the large representational area of the hand and forearm in Brodman Area 4. By optimizing the stimulation parameters in two steps (step 1: stimulation frequency and step 2: train sequence) MCS was successful in 91% (232/255) of the cases. Statistical analysis of the parameters latency, potential width and amplitude showed spontaneous latency prolongations and abrupt amplitude reductions as a reliable warning signal for direct involvement of the motor cortex or motor pathways. CONCLUSION: MCS must be considered a stimulation technique that enables reliable qualitative analysis of the recorded potentials, which may thus be regarded as directly predictive. Nevertheless, like other intraoperative neurophysiological examination techniques, MCS has technical, anatomical and neurophysiological limitations. A variety of surgical and non-surgical influences can be reason for false positive or false negative measurements

    Subcellular Localization of SUN2 Is Regulated by Lamin A and Rab5

    Get PDF
    SUN2 is an inner nuclear membrane protein with a conserved Sad1/UNC-84 homology SUN-domain at the C-terminus. Intriguingly, SUN2 has also been reported to interact with Rab5, which localizes in early endosomes. To clarify the dual subcellular localization of SUN2, we investigated its localization in lamin A/C deficient cells rescued with lamin A or lamin C isoform, and in HeLa cells transfected with Rab5 or its mutants. We found that expression of lamin A but not lamin C partly restored the nuclear envelope localization of SUN2. SUN2 was redistributed to endosomes upon overexpression of Rab5, but remained on the nuclear envelope when the SUN domain was deleted. To explore the physiological function of SUN2 in vesicle trafficking and endocytosis, we demonstrated the colocalization of endogenous SUN2 and Rab5. Moreover, overexpression of SUN2 stimulated the uptake of transferrin while suppression of SUN2 expression attenuated the process. These findings support a role of SUN2 in endocytosis
    • …
    corecore