31 research outputs found

    Ultrafast Laser-Induced Melting of Long-Range Magnetic Order in Multiferroic TbMnO3

    Full text link
    We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.Comment: 9 pages, 4 figure

    Hard X-ray USAXS Fourier Transform Holography

    No full text
    We report on a Fourier transform holography study, employing hard X-ray energies at a 3rd generation storage ring. Nano-structures of various sizes and shapes have been measured in ultra small angle x-ray scattering configuration reaching a resolution in the holographic reconstructions of about 50 nm. Reliable holograms have been obtained with 6.9×106 incident photons. Our results provide an important step forward towards routine split-pulse Fourier transform holography measurements at FEL sources and 4th generation ultralow-emittance sources.
    corecore